Suppr超能文献

隐秘进化:环境恶化是否具有遗传基础?

Cryptic evolution: does environmental deterioration have a genetic basis?

机构信息

Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.

出版信息

Genetics. 2011 Apr;187(4):1099-113. doi: 10.1534/genetics.110.124990. Epub 2011 Jan 17.

Abstract

Cryptic evolution has been defined as adaptive evolutionary change being masked by concurrent environmental change. Empirical studies of cryptic evolution have usually invoked a changing climate and/or increasing population density as the form of detrimental environmental change experienced by a population undergoing cryptic evolution. However, Fisher (1958) emphasized that evolutionary change in itself is likely to be an important component of "environmental deterioration," a point restated by Cooke et al. (1990) in the context of intraspecific competition. In this form, environmental deterioration arises because a winning lineage has to compete against more winners in successive generations as the population evolves. This "evolutionary environmental deterioration" has different implications for the selection and evolution of traits influenced by resource competition than general environmental change. We reformulate Cooke's model as a quantitative genetic model to show that it is identical in form to more recent developments proposed by quantitative geneticists. This provides a statistical framework for discriminating between the alternative hypotheses of environmental change and environmental deterioration caused by evolutionary change. We also demonstrate that in systems where no phenotypic change has occurred, there are many reasonable biological processes that will generate patterns in predicted breeding values that are consistent with what has been interpreted as cryptic evolution, and care needs to be taken when interpreting these patterns. These processes include mutation, sib competition, and invisible fractions.

摘要

隐秘进化被定义为适应性进化变化被同时发生的环境变化所掩盖。对隐秘进化的实证研究通常援引气候变化和/或人口密度增加作为经历隐秘进化的种群所经历的有害环境变化的形式。然而,Fisher(1958)强调,进化变化本身可能是“环境恶化”的一个重要组成部分,Cooke 等人(1990)在种内竞争的背景下重申了这一点。在这种形式下,由于在种群进化过程中,一个获胜的谱系在连续几代中必须与更多的获胜者竞争,因此环境恶化就会出现。这种“进化环境恶化”对受资源竞争影响的特征的选择和进化有不同于一般环境变化的影响。我们将 Cooke 的模型重新表述为一个数量遗传模型,以表明它与数量遗传学家提出的最近的发展在形式上是相同的。这为区分环境变化和进化引起的环境恶化的替代假设提供了一个统计框架。我们还表明,在没有表型变化发生的系统中,有许多合理的生物学过程会在预测的繁殖值中产生与被解释为隐秘进化一致的模式,因此在解释这些模式时需要小心。这些过程包括突变、同胞竞争和看不见的部分。

相似文献

1
Cryptic evolution: does environmental deterioration have a genetic basis?
Genetics. 2011 Apr;187(4):1099-113. doi: 10.1534/genetics.110.124990. Epub 2011 Jan 17.
2
Adaptation to a novel family environment involves both apparent and cryptic phenotypic changes.
Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.1295.
3
Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution.
Biol Rev Camb Philos Soc. 2021 Dec;96(6):2561-2572. doi: 10.1111/brv.12768. Epub 2021 Jun 18.
4
Competition as a source of constraint on life history evolution in natural populations.
Heredity (Edinb). 2014 Jan;112(1):70-8. doi: 10.1038/hdy.2013.7. Epub 2013 Feb 27.
6
Environmental Change, If Unaccounted, Prevents Detection of Cryptic Evolution in a Wild Population.
Am Nat. 2021 Jan;197(1):29-46. doi: 10.1086/711874. Epub 2020 Nov 25.
7
Asymmetric competition impacts evolutionary rescue in a changing environment.
Proc Biol Sci. 2017 Jun 28;284(1857). doi: 10.1098/rspb.2017.0374.
8
Cryptic evolution in a wild bird population.
Nature. 2001 Jul 5;412(6842):76-9. doi: 10.1038/35083580.
9
Climate change and evolution: disentangling environmental and genetic responses.
Mol Ecol. 2008 Jan;17(1):167-78. doi: 10.1111/j.1365-294X.2007.03413.x.
10
The role of selection and evolution in changing parturition date in a red deer population.
PLoS Biol. 2019 Nov 5;17(11):e3000493. doi: 10.1371/journal.pbio.3000493. eCollection 2019 Nov.

引用本文的文献

1
The stagnation paradox: the ever-improving but (more or less) stationary population fitness.
Proc Biol Sci. 2021 Nov 24;288(1963):20212145. doi: 10.1098/rspb.2021.2145. Epub 2021 Nov 17.
2
Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution.
Biol Rev Camb Philos Soc. 2021 Dec;96(6):2561-2572. doi: 10.1111/brv.12768. Epub 2021 Jun 18.
3
Individual differences determine the strength of ecological interactions.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17068-17073. doi: 10.1073/pnas.2000635117. Epub 2020 Jul 6.
4
The role of indirect genetic effects in the evolution of interacting reproductive behaviors in the burying beetle, .
Ecol Evol. 2019 Jan 18;9(3):998-1009. doi: 10.1002/ece3.4731. eCollection 2019 Feb.
6
Adaptation to a novel family environment involves both apparent and cryptic phenotypic changes.
Proc Biol Sci. 2017 Sep 13;284(1862). doi: 10.1098/rspb.2017.1295.
8
Is my study system good enough? A case study for identifying maternal effects.
Ecol Evol. 2016 Apr 20;6(11):3486-3495. doi: 10.1002/ece3.2124. eCollection 2016 Jun.
9
Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird.
PLoS Biol. 2015 Apr 7;13(4):e1002120. doi: 10.1371/journal.pbio.1002120. eCollection 2015 Apr.
10
The quantitative genetics of indirect genetic effects: a selective review of modelling issues.
Heredity (Edinb). 2014 Jan;112(1):61-9. doi: 10.1038/hdy.2013.15. Epub 2013 Mar 20.

本文引用的文献

2
THE EVOLUTION OF MATERNAL CHARACTERS.
Evolution. 1989 May;43(3):485-503. doi: 10.1111/j.1558-5646.1989.tb04247.x.
3
QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY.
Evolution. 1979 Mar;33(1Part2):402-416. doi: 10.1111/j.1558-5646.1979.tb04694.x.
4
BODY SIZE DECLINES DESPITE POSITIVE DIRECTIONAL SELECTION ON HERITABLE SIZE TRAITS IN A BARNACLE GOOSE POPULATION.
Evolution. 1998 Aug;52(4):1169-1184. doi: 10.1111/j.1558-5646.1998.tb01843.x.
5
THE EVOLUTION OF COSTLY MATE PREFERENCES II. THE "HANDICAP" PRINCIPLE.
Evolution. 1991 Sep;45(6):1431-1442. doi: 10.1111/j.1558-5646.1991.tb02646.x.
6
REGRESSION ANALYSIS OF NATURAL SELECTION: STATISTICAL INFERENCE AND BIOLOGICAL INTERPRETATION.
Evolution. 1987 Nov;41(6):1149-1161. doi: 10.1111/j.1558-5646.1987.tb02457.x.
7
THE INFLUENCE OF ENVIRONMENTAL VARIATION ON GROUP AND INDIVIDUAL SELECTION IN A CRESS.
Evolution. 1985 May;39(3):545-558. doi: 10.1111/j.1558-5646.1985.tb00394.x.
8
Evolutionary consequences of indirect genetic effects.
Trends Ecol Evol. 1998 Feb 1;13(2):64-9. doi: 10.1016/s0169-5347(97)01233-0.
9
Fisher's fundamental theorem of natural selection.
Trends Ecol Evol. 1992 Mar;7(3):92-5. doi: 10.1016/0169-5347(92)90248-A.
10
Multilevel selection 4: modeling the relationship of indirect genetic effects and group size.
Genetics. 2010 Nov;186(3):1029-31. doi: 10.1534/genetics.110.120485. Epub 2010 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验