Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
Biophys J. 2011 Jan 19;100(2):469-77. doi: 10.1016/j.bpj.2010.11.053.
Binding free energies are calculated for the phosphorylated and unphosphorylated complexes between the kinase inducible domain (KID) of the DNA transcriptional activator cAMP response element binding (CREB) protein and the KIX domain of its coactivator, CREB-binding protein (CBP). To our knowledge, this is the first application of a method based on a potential of mean force (PMF) with restraining potentials to compute the binding free energy of protein-protein complexes. The KID:KIX complexes are chosen here because of their biological relevance to the DNA transcription process and their relatively small size (81 residues for the KIX domain of CBP, and 28 residues for KID). The results for pKID:KIX and KID:KIX are -9.55 and -4.96 kcal/mol, respectively, in good agreement with experimental estimates (-8.8 and -5.8 kcal/mol, respectively). A comparison between specific contributions to protein-protein binding for the phosphorylated and unphosphorylated complexes reveals a dual role for the phosphorylation of KID at Ser-133 in effecting a more favorable free energy of the bound system: 1), stabilization of the unbound conformation of phosphorylated KID due to favorable intramolecular interactions of the phosphate group of Ser-133 with the charged groups of an arginine-rich region spanning both α-helices, which lowers the configurational entropy; and 2), more favorable intermolecular electrostatic interactions between pSer-133 and Arg-131 of KID, and Lys-662, Tyr-658, and Glu-666 of KIX. Charge reduction through ligand phosphorylation emerges as a possible mechanism for controlling the unbound state conformation of KID and, ultimately, gene expression. This work also demonstrates that the PMF-based method with restraining potentials provides an added benefit in that important elements of the binding pathway are evidenced. Furthermore, the practicality of the PMF-based method for larger systems is validated by agreement with experiment. In addition, we provide a somewhat differently structured exposition of the PMF-based method with restraining potentials and outline its generalization to systems in which both protein and ligand may adopt unbound conformations that are different from those of the bound state.
我们计算了 DNA 转录激活因子 cAMP 反应元件结合蛋白(CREB)激酶诱导结构域(KID)与辅激活因子 CREB 结合蛋白(CBP)的 KIX 结构域之间的磷酸化和非磷酸化复合物的结合自由能。据我们所知,这是首次应用基于平均力势(PMF)和约束势的方法来计算蛋白质-蛋白质复合物的结合自由能。选择 KID:KIX 复合物是因为它们与 DNA 转录过程的生物学相关性以及它们相对较小的尺寸(CBP 的 KIX 结构域为 81 个残基,KID 为 28 个残基)。对于 pKID:KIX 和 KID:KIX,结果分别为-9.55 和-4.96 kcal/mol,与实验估计值(分别为-8.8 和-5.8 kcal/mol)非常吻合。对磷酸化和非磷酸化复合物的蛋白质-蛋白质结合的特定贡献进行比较,揭示了 KID 在 Ser-133 磷酸化中对结合系统更有利的自由能的双重作用:1)由于 Ser-133 的磷酸基团与跨越两个α-螺旋的富含精氨酸的区域的带电基团之间的有利的分子内相互作用,使磷酸化 KID 的未结合构象稳定,从而降低了构象熵;2)在 pSer-133 和 KID 的 Arg-131 之间,以及 KIX 的 Lys-662、Tyr-658 和 Glu-666 之间具有更有利的分子间静电相互作用。通过配体磷酸化减少电荷,可能成为控制 KID 未结合状态构象并最终控制基因表达的一种机制。这项工作还表明,基于 PMF 的方法与约束势相结合提供了一个额外的好处,即证据表明了结合途径的重要元素。此外,通过与实验结果的一致性,验证了基于 PMF 的方法在更大系统中的实用性。此外,我们提供了一种基于 PMF 的方法与约束势的略有不同的结构阐述,并概述了其对蛋白质和配体都可能采用不同于结合状态的未结合构象的系统的推广。