Suppr超能文献

果蝇线粒体DNA的进化与黑腹果蝇亚组的历史

Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup.

作者信息

Satta Y, Takahata N

机构信息

National Institute of Genetics, Mishima, Japan.

出版信息

Proc Natl Acad Sci U S A. 1990 Dec;87(24):9558-62. doi: 10.1073/pnas.87.24.9558.

Abstract

The nucleotide sequences of a common region of 15 mitochondrial DNAs (mtDNAs) sampled from the Drosophila melanogaster subgroup were determined. The region is 2527 base pairs long, including most of the NADH dehydrogenase subunit 2 and cytochrome oxidase subunit 1 genes punctuated by three tRNA genes. The comparative study revealed (i) the extremely low saturation level of transitional differences, (ii) recombination or variable substitution rates even within species, (iii) long persistence times of distinct types of mtDNA in Drosophila simulans and Drosophila mauritiana, and (iv) an apparent lack of within-type variations in island species. Also found was a high correlation among the transitional rate, the saturation level, and the G + C content (or codon usage). It appears that D. simulans and D. mauritiana have maintained highly structured populations for more than 1 million years. Such structures are consistent with the origination of Drosophila sechellia from D. simulans. Yet geographic isolation is so weak as to show no evidence for further speciation. Moreover, one type of mtDNA shared by D. simulans and D. mauritiana suggests either recent divergence or ongoing introgression.

摘要

测定了从黑腹果蝇亚组中抽取的15个线粒体DNA(mtDNA)共同区域的核苷酸序列。该区域长2527个碱基对,包括大部分NADH脱氢酶亚基2和细胞色素氧化酶亚基1基因,并穿插着三个tRNA基因。比较研究揭示了:(i)转换差异的饱和度极低;(ii)即使在物种内部也存在重组或可变替换率;(iii)在拟暗果蝇和毛里求斯果蝇中,不同类型的mtDNA持续时间很长;(iv)岛屿物种中明显缺乏类型内变异。还发现转换率、饱和度水平和G + C含量(或密码子使用)之间存在高度相关性。看来,拟暗果蝇和毛里求斯果蝇已经维持高度结构化的种群超过100万年。这种结构与海氏果蝇起源于拟暗果蝇一致。然而,地理隔离非常微弱,没有证据表明有进一步的物种形成。此外,拟暗果蝇和毛里求斯果蝇共有的一种mtDNA类型表明要么是最近的分化,要么是正在进行的基因渗入。

相似文献

1
Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup.
Proc Natl Acad Sci U S A. 1990 Dec;87(24):9558-62. doi: 10.1073/pnas.87.24.9558.
2
Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species.
Mol Biol Evol. 1987 Nov;4(6):638-50. doi: 10.1093/oxfordjournals.molbev.a040464.
3
Neutral and non-neutral evolution of Drosophila mitochondrial DNA.
Genetics. 1994 Nov;138(3):741-56. doi: 10.1093/genetics/138.3.741.
4
Inter-island divergence within Drosophila mauritiana, a species of the D. simulans complex: Past history and/or speciation in progress?
Mol Ecol. 2011 Jul;20(13):2787-804. doi: 10.1111/j.1365-294X.2011.05127.x. Epub 2011 May 21.
7
Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup.
Genetics. 1988 Apr;118(4):671-83. doi: 10.1093/genetics/118.4.671.
8
Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila.
J Mol Evol. 1986;23(1):31-40. doi: 10.1007/BF02100996.
10
The population genetics of the origin and divergence of the Drosophila simulans complex species.
Genetics. 2000 Dec;156(4):1913-31. doi: 10.1093/genetics/156.4.1913.

引用本文的文献

1
Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Clade Species.
Front Genet. 2021 Jun 23;12:669045. doi: 10.3389/fgene.2021.669045. eCollection 2021.
2
Towards a synthesis of the Caribbean biogeography of terrestrial arthropods.
BMC Evol Biol. 2020 Jan 24;20(1):12. doi: 10.1186/s12862-019-1576-z.
6
Genome sequencing reveals complex speciation in the Drosophila simulans clade.
Genome Res. 2012 Aug;22(8):1499-511. doi: 10.1101/gr.130922.111. Epub 2012 Apr 13.
7
DNA Barcoding and Molecular Phylogeny of Drosophila lini and Its Sibling Species.
Int J Evol Biol. 2012;2012:329434. doi: 10.1155/2012/329434. Epub 2012 Feb 8.
8
Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression.
Mol Ecol. 2010 Nov;19(21):4695-707. doi: 10.1111/j.1365-294X.2010.04838.x. Epub 2010 Oct 7.
10
The population genetics of the origin and divergence of the Drosophila simulans complex species.
Genetics. 2000 Dec;156(4):1913-31. doi: 10.1093/genetics/156.4.1913.

本文引用的文献

3
Genetic diversity and structure in Escherichia coli populations.
Science. 1980 Oct 31;210(4469):545-7. doi: 10.1126/science.6999623.
5
6
Critical experimental test of the possibility of "paternal leakage" of mitochondrial DNA.
Proc Natl Acad Sci U S A. 1983 Apr;80(7):1969-71. doi: 10.1073/pnas.80.7.1969.
7
Evolutionary rate at the molecular level.
Nature. 1968 Feb 17;217(5129):624-6. doi: 10.1038/217624a0.
8
The neighbor-joining method: a new method for reconstructing phylogenetic trees.
Mol Biol Evol. 1987 Jul;4(4):406-25. doi: 10.1093/oxfordjournals.molbev.a040454.
9
HLA-A and B polymorphisms predate the divergence of humans and chimpanzees.
Nature. 1988 Sep 15;335(6187):268-71. doi: 10.1038/335268a0.
10
The coalescent in two partially isolated diffusion populations.
Genet Res. 1988 Dec;52(3):213-22. doi: 10.1017/s0016672300027683.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验