Suppr超能文献

基于负选择预测功能重要 SNP 类别。

Predicting functionally important SNP classes based on negative selection.

机构信息

Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

BMC Bioinformatics. 2011 Jan 19;12:26. doi: 10.1186/1471-2105-12-26.

Abstract

BACKGROUND

With the advent of cost-effective genotyping technologies, genome-wide association studies allow researchers to examine hundreds of thousands of single nucleotide polymorphisms (SNPs) for association with human disease. Recently, many researchers applying this strategy have detected strong associations to disease with SNP markers that are either not in linkage disequilibrium with any nonsynonymous SNP or large distances from any annotated gene. In such cases, no well-established standard practice for effective SNP selection for follow-up studies exists. We aim to identify and prioritize groups of SNPs that are more likely to affect phenotypes in order to facilitate efficient SNP selection for follow-up studies.

RESULTS

Based on the annotations available in the Ensembl database, we categorized SNPs in the human genome into classes related to regulatory attributes, such as epigenetic modifications and transcription factor binding sites, in addition to classes related to gene structure and cross-species conservation. Using the distribution of derived allele frequencies (DAF) within each class, we assessed the strength of natural selection for each class relative to the genome as a whole. We applied this DAF analysis to Perlegen resequenced SNPs genome-wide. Regulatory elements annotated by Ensembl such as specific histone methylation sites as well as classes defined by cross-species conservation showed negative selection in comparison to the genome as a whole.

CONCLUSIONS

These results highlight which annotated classes are under purifying selection, have putative functional importance, and contain SNPs that are strong candidates for follow-up studies after genome-wide association. Such SNP annotation may also be useful in interpreting results of whole-genome sequencing studies.

摘要

背景

随着具有成本效益的基因分型技术的出现,全基因组关联研究使研究人员能够检查与人类疾病相关的数十万种单核苷酸多态性(SNP)。最近,许多应用这种策略的研究人员已经检测到与疾病相关的强关联,这些关联与 SNP 标记无关,这些 SNP 标记与任何非同义 SNP 或任何注释基因的大距离都没有连锁不平衡。在这种情况下,对于后续研究的有效 SNP 选择,没有完善的标准实践。我们旨在确定和优先考虑更有可能影响表型的 SNP 组,以促进后续研究中 SNP 的有效选择。

结果

基于 Ensembl 数据库中的注释,我们将人类基因组中的 SNP 分为与调节属性相关的类别,例如表观遗传修饰和转录因子结合位点,以及与基因结构和跨物种保守性相关的类别。使用每个类别中衍生等位基因频率(DAF)的分布,我们评估了每个类别相对于整个基因组的自然选择强度。我们将这种 DAF 分析应用于 Perlegen 重新测序的全基因组 SNP。与整个基因组相比,Ensembl 注释的调节元件,如特定组蛋白甲基化位点以及通过跨物种保守性定义的类别,显示出负选择。

结论

这些结果突出了哪些注释类别受到净化选择的影响,具有潜在的功能重要性,并包含在全基因组关联后作为后续研究的有力候选 SNP。这种 SNP 注释也可能有助于解释全基因组测序研究的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验