Suppr超能文献

不同类型先验知识在选择全基因组发现进行随访中的重要性。

Importance of different types of prior knowledge in selecting genome-wide findings for follow-up.

机构信息

Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy.

出版信息

Genet Epidemiol. 2013 Feb;37(2):205-13. doi: 10.1002/gepi.21705.

Abstract

Biological plausibility and other prior information could help select genome-wide association (GWA) findings for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts' opinions and empirical evidence to estimate the relative importance of 15 types of information at the single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.

摘要

生物学合理性和其他先验信息可以帮助选择全基因组关联 (GWA) 发现进行进一步的随访,但对于应该考虑哪些类型的知识以及如何加权这些知识,尚无共识。我们使用专家意见和经验证据来估计在单核苷酸多态性 (SNP) 和基因水平上的 15 种信息类型的相对重要性。意见是通过两轮德尔菲调查从 10 位专家那里获得的。通过比较通过 GWA 荟萃分析和独立复制确定与七种疾病特征相关的每个特征类型的 SNP 中的频率与随机选择的 SNP 集中的相应频率,获得了经验证据。使用专门开发的生物信息学工具检索 SNP 和基因特征。专家和经验证据都将荟萃分析或多项研究中的先前关联评为赋予真实关联的最高相对概率,而单一研究中的先前关联排名要低得多。在功能蛋白域中的位置也观察到较高的相对概率,尽管在脊椎动物进化上保守的区域中的位置被数据评为高,但专家却没有。我们的经验证据不支持专家对基因是否在途径中编码蛋白或显示与特征相关的相互作用所赋予的重要性。我们的研究结果提供了有关在 SNP 或基因优先级中选择和加权不同类型知识的见解,并指出了需要进一步研究的领域。

相似文献

1
2
SNP prioritization using a Bayesian probability of association.
Genet Epidemiol. 2013 Feb;37(2):214-21. doi: 10.1002/gepi.21704. Epub 2012 Dec 26.
4
Genome-wide "pleiotropy scan" identifies HNF1A region as a novel pancreatic cancer susceptibility locus.
Cancer Res. 2011 Jul 1;71(13):4352-8. doi: 10.1158/0008-5472.CAN-11-0124. Epub 2011 Apr 15.
6
Implementing meta-analysis from genome-wide association studies for pork quality traits.
J Anim Sci. 2015 Dec;93(12):5607-17. doi: 10.2527/jas.2015-9502.
8
Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
BMC Syst Biol. 2012;6 Suppl 3(Suppl 3):S15. doi: 10.1186/1752-0509-6-S3-S15. Epub 2012 Dec 17.
9
SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
IEEE Trans Nanobioscience. 2012 Sep;11(3):216-27. doi: 10.1109/TNB.2012.2214232.
10
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
BMC Genomics. 2015;16 Suppl 2(Suppl 2):S5. doi: 10.1186/1471-2164-16-S2-S5. Epub 2015 Jan 21.

引用本文的文献

2
Genome-wide association study for time to failure of kidney transplants from African American deceased donors.
Clin Transplant. 2020 Jun;34(6):e13827. doi: 10.1111/ctr.13827. Epub 2020 Apr 25.
3
The Evolving Field of Genetic Epidemiology: From Familial Aggregation to Genomic Sequencing.
Am J Epidemiol. 2019 Dec 31;188(12):2069-2077. doi: 10.1093/aje/kwz193.
4
iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies.
Genet Epidemiol. 2019 Oct;43(7):742-760. doi: 10.1002/gepi.22217. Epub 2019 Jul 22.
6
Inclusion of biological knowledge in a Bayesian shrinkage model for joint estimation of SNP effects.
Genet Epidemiol. 2017 May;41(4):320-331. doi: 10.1002/gepi.22038. Epub 2017 Apr 10.
7
A two-stage inter-rater approach for enrichment testing of variants associated with multiple traits.
Eur J Hum Genet. 2017 Feb;25(3):341-349. doi: 10.1038/ejhg.2016.171. Epub 2016 Dec 21.
8
Weighting sequence variants based on their annotation increases power of whole-genome association studies.
Nat Genet. 2016 Mar;48(3):314-7. doi: 10.1038/ng.3507. Epub 2016 Feb 8.
9
Two-phase and family-based designs for next-generation sequencing studies.
Front Genet. 2013 Dec 13;4:276. doi: 10.3389/fgene.2013.00276.
10
A review of post-GWAS prioritization approaches.
Front Genet. 2013 Dec 9;4:280. doi: 10.3389/fgene.2013.00280.

本文引用的文献

1
Computational tools for prioritizing candidate genes: boosting disease gene discovery.
Nat Rev Genet. 2012 Jul 3;13(8):523-36. doi: 10.1038/nrg3253.
3
Methods for meta-analyses of genome-wide association studies: critical assessment of empirical evidence.
Am J Epidemiol. 2012 Apr 15;175(8):739-49. doi: 10.1093/aje/kwr385. Epub 2012 Mar 16.
4
In silico gene prioritization by integrating multiple data sources.
PLoS One. 2011;6(6):e21137. doi: 10.1371/journal.pone.0021137. Epub 2011 Jun 24.
8
Predicting functionally important SNP classes based on negative selection.
BMC Bioinformatics. 2011 Jan 19;12:26. doi: 10.1186/1471-2105-12-26.
10
Use of pathway information in molecular epidemiology.
Hum Genomics. 2009 Oct;4(1):21-42. doi: 10.1186/1479-7364-4-1-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验