Suppr超能文献

在从细菌内膜获得的巨大单层囊泡内部,重建和组织大肠杆菌原环元件(FtsZ 和 FtsA)。

Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes.

机构信息

Chemical and Physical Biology Programme, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.

出版信息

J Biol Chem. 2011 Apr 1;286(13):11236-41. doi: 10.1074/jbc.M110.194365. Epub 2011 Jan 21.

Abstract

We have incorporated, for the first time, FtsZ and FtsA (the soluble proto-ring proteins from Escherichia coli) into bacterial giant unilamellar inner membrane vesicles (GUIMVs). Inside the vesicles, the structural organization and spatial distribution of fluorescently labeled FtsZ and FtsA were determined by confocal microscopy. We found that, in the presence of GDP, FtsZ was homogeneously distributed in the lumen of the vesicle. In the presence of GTP analogs, FtsZ assembled inside the GUIMVs, forming a web of dense spots and fibers. Whereas isolated FtsA was found adsorbed to the inner face of GUIMVs, the addition of FtsZ together with GTP analogs resulted in its dislodgement and its association with the FtsZ fibers in the lumen, suggesting that the FtsA-membrane interaction can be modulated by FtsZ polymers. The use of this novel in vitro system to probe interactions between divisome components will help to determine the biological implications of these findings.

摘要

我们首次将 FtsZ 和 FtsA(来自大肠杆菌的可溶性原环蛋白)纳入细菌巨单层内膜囊泡(GUIMVs)中。在囊泡内,通过共聚焦显微镜确定了荧光标记的 FtsZ 和 FtsA 的结构组织和空间分布。我们发现,在 GDP 存在的情况下,FtsZ 在囊泡腔中均匀分布。在 GTP 类似物存在的情况下,FtsZ 在 GUIMVs 内组装,形成密集斑点和纤维网。虽然分离的 FtsA 被发现吸附在 GUIMVs 的内表面,但加入 FtsZ 与 GTP 类似物一起导致其脱离并与腔中的 FtsZ 纤维结合,表明 FtsA-膜相互作用可以通过 FtsZ 聚合物进行调节。使用这种新的体外系统来探测分裂体成分之间的相互作用将有助于确定这些发现的生物学意义。

相似文献

4
FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves.
Biophys J. 2015 May 5;108(9):2371-83. doi: 10.1016/j.bpj.2015.03.031.
5
ZipA Uses a Two-Pronged FtsZ-Binding Mechanism Necessary for Cell Division.
mBio. 2021 Dec 21;12(6):e0252921. doi: 10.1128/mbio.02529-21. Epub 2021 Dec 14.
6
FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks.
Biochim Biophys Acta. 2012 Mar;1818(3):806-13. doi: 10.1016/j.bbamem.2011.12.012. Epub 2011 Dec 16.
8
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
J Biol Chem. 2013 Feb 1;288(5):3219-26. doi: 10.1074/jbc.M112.434944. Epub 2012 Dec 11.
10
Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling.
Mol Microbiol. 2018 Sep;109(5):676-693. doi: 10.1111/mmi.14069. Epub 2018 Aug 1.

引用本文的文献

1
Model architectures for bacterial membranes.
Biophys Rev. 2022 Mar 7;14(1):111-143. doi: 10.1007/s12551-021-00913-7. eCollection 2022 Feb.
2
Modified nucleoside triphosphates in bacterial research for and live-cell applications.
RSC Chem Biol. 2020 Dec 1;1(5):333-351. doi: 10.1039/d0cb00078g. Epub 2020 Sep 14.
3
Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer.
ACS Omega. 2019 Mar 31;4(3):5293-5303. doi: 10.1021/acsomega.8b02955. Epub 2019 Mar 13.
6
Investigations to the Antibacterial Mechanism of Action of Kendomycin.
PLoS One. 2016 Jan 21;11(1):e0146165. doi: 10.1371/journal.pone.0146165. eCollection 2016.
7
The Cell Division Protein FtsZ from Streptococcus pneumoniae Exhibits a GTPase Activity Delay.
J Biol Chem. 2015 Oct 9;290(41):25081-9. doi: 10.1074/jbc.M115.650077. Epub 2015 Sep 1.
8
Engineering artificial cells by combining HeLa-based cell-free expression and ultrathin double emulsion template.
Methods Cell Biol. 2015;128:303-18. doi: 10.1016/bs.mcb.2015.01.014. Epub 2015 Apr 8.
9
The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity.
PLoS One. 2015 May 7;10(5):e0126434. doi: 10.1371/journal.pone.0126434. eCollection 2015.
10
Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species.
PLoS Comput Biol. 2015 Mar 26;11(3):e1004117. doi: 10.1371/journal.pcbi.1004117. eCollection 2015 Mar.

本文引用的文献

1
Advances in understanding E. coli cell fission.
Curr Opin Microbiol. 2010 Dec;13(6):730-7. doi: 10.1016/j.mib.2010.09.015. Epub 2010 Oct 11.
2
Strong FtsZ is with the force: mechanisms to constrict bacteria.
Trends Microbiol. 2010 Aug;18(8):348-56. doi: 10.1016/j.tim.2010.06.001. Epub 2010 Jul 1.
4
Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA.
J Biol Chem. 2009 May 22;284(21):14079-86. doi: 10.1074/jbc.M808872200. Epub 2009 Mar 17.
5
Macromolecular crowding improves polymer encapsulation within giant lipid vesicles.
Langmuir. 2008 Dec 2;24(23):13565-71. doi: 10.1021/la8028403.
6
Giant unilamellar vesicle formation under physiologically relevant conditions.
Chem Phys Lipids. 2008 Aug;154(2):115-9. doi: 10.1016/j.chemphyslip.2008.03.008. Epub 2008 Mar 22.
7
Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions.
Biophys J. 2007 Nov 15;93(10):3548-54. doi: 10.1529/biophysj.107.116228. Epub 2007 Aug 17.
8
The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring.
Microbiology (Reading). 2007 Mar;153(Pt 3):814-825. doi: 10.1099/mic.0.2006/001834-0.
9
The order of the ring: assembly of Escherichia coli cell division components.
Mol Microbiol. 2006 Jul;61(1):5-8. doi: 10.1111/j.1365-2958.2006.05233.x.
10
Septum enlightenment: assembly of bacterial division proteins.
J Bacteriol. 2006 Jan;188(1):19-27. doi: 10.1128/JB.188.1.19-27.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验