Suppr超能文献

由 synfire 链层次结构实现的组合性机器。

A compositionality machine realized by a hierarchic architecture of synfire chains.

机构信息

Honda Research Institute Offenbach, Germany.

出版信息

Front Comput Neurosci. 2011 Jan 5;4:154. doi: 10.3389/fncom.2010.00154. eCollection 2011.

Abstract

The composition of complex behavior is thought to rely on the concurrent and sequential activation of simpler action components, or primitives. Systems of synfire chains have previously been proposed to account for either the simultaneous or the sequential aspects of compositionality; however, the compatibility of the two aspects has so far not been addressed. Moreover, the simultaneous activation of primitives has up until now only been investigated in the context of reactive computations, i.e., the perception of stimuli. In this study we demonstrate how a hierarchical organization of synfire chains is capable of generating both aspects of compositionality for proactive computations such as the generation of complex and ongoing action. To this end, we develop a network model consisting of two layers of synfire chains. Using simple drawing strokes as a visualization of abstract primitives, we map the feed-forward activity of the upper level synfire chains to motion in two-dimensional space. Our model is capable of producing drawing strokes that are combinations of primitive strokes by binding together the corresponding chains. Moreover, when the lower layer of the network is constructed in a closed-loop fashion, drawing strokes are generated sequentially. The generated pattern can be random or deterministic, depending on the connection pattern between the lower level chains. We propose quantitative measures for simultaneity and sequentiality, revealing a wide parameter range in which both aspects are fulfilled. Finally, we investigate the spiking activity of our model to propose candidate signatures of synfire chain computation in measurements of neural activity during action execution.

摘要

复杂行为的构成被认为依赖于更简单的动作成分或原语的并发和顺序激活。先前已经提出了 synfire 链系统来解释组合性的同时或顺序方面;然而,这两个方面的兼容性迄今为止尚未得到解决。此外,到目前为止,原语的同时激活仅在反应性计算(即对刺激的感知)的背景下进行了研究。在这项研究中,我们展示了 synfire 链的分层组织如何能够为主动计算生成组合性的两个方面,例如复杂和持续动作的生成。为此,我们开发了一个由两层 synfire 链组成的网络模型。使用简单的绘图笔划作为抽象原语的可视化,我们将上层 synfire 链的前馈活动映射到二维空间中的运动。我们的模型能够通过将相应的链绑定在一起,生成由原语笔划组合而成的绘图笔划。此外,当网络的下层以闭环方式构建时,绘图笔划会按顺序生成。生成的模式可以是随机的,也可以是确定的,具体取决于下层链之间的连接模式。我们提出了用于同时性和顺序性的定量度量标准,揭示了两个方面都满足的广泛参数范围。最后,我们研究了我们模型的尖峰活动,以在动作执行期间的神经活动测量中提出 synfire 链计算的候选特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0501/3020397/e335227f9ad9/fncom-04-00154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验