Suppr超能文献

通过同步激发链的动态绑定对组合性进行建模。

Modeling compositionality by dynamic binding of synfire chains.

作者信息

Abeles Moshe, Hayon Gaby, Lehmann Daniel

机构信息

Department of Physiology and the Center for Neural Computation, The Hebrew University, Jerusalem, Israel.

出版信息

J Comput Neurosci. 2004 Sep-Oct;17(2):179-201. doi: 10.1023/B:JCNS.0000037682.18051.5f.

Abstract

This paper examines the feasibility of manifesting compositionality by a system of synfire chains. Compositionality is the ability to construct mental representations, hierarchically, in terms of parts and their relations. We show that synfire chains may synchronize their waves when a few orderly cross links are available. We propose that synchronization among synfire chains can be used for binding component into a whole. Such synchronization is shown both for detailed simulations, and by numerical analysis of the propagation of a wave along a synfire chain. We show that global inhibition may prevent spurious synchronization among synfire chains. We further show that selecting which synfire chains may synchronize to which others may be improved by including inhibitory neurons in the synfire pools. Finally we show that in a hierarchical system of synfire chains, a part-binding problem may be resolved, and that such a system readily demonstrates the property of priming. We compare the properties of our system with the general requirements for neural networks that demonstrate compositionality.

摘要

本文探讨了通过同步激发链系统实现组合性的可行性。组合性是指根据部分及其关系,分层构建心理表征的能力。我们表明,当有一些有序的交叉连接时,同步激发链可能会使它们的波同步。我们提出,同步激发链之间的同步可用于将组件绑定成一个整体。这种同步在详细模拟以及沿同步激发链的波传播的数值分析中均有体现。我们表明,全局抑制可防止同步激发链之间出现虚假同步。我们进一步表明,通过在同步激发池中纳入抑制性神经元,选择哪些同步激发链可以与哪些其他链同步的问题可能会得到改善。最后,我们表明,在同步激发链的分层系统中,部分绑定问题可能会得到解决,并且这样的系统很容易表现出启动特性。我们将我们系统的特性与展示组合性的神经网络的一般要求进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验