Suppr超能文献

基于分布的高变异生化系统灵敏度度量。

Distribution-based sensitivity metric for highly variable biochemical systems.

机构信息

University of California - Santa Barbara, Program in Biomolecular Science and Engineering, Santa Barbara, USAColby College, Department of Computer Science, Waterville, USAUniversity of California - Santa Barbara, Department of Chemical Engineering, Santa Barbara, USAETH Zurich, Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, Basel, SwitzerlandUniversity of California - Santa Barbara, Department of Chemical Engineering, Program in Biomolecular Science and Engineering, Santa Barbara, USA.

出版信息

IET Syst Biol. 2011 Jan;5(1):50. doi: 10.1049/iet-syb.2009.0064.

Abstract

Classical sensitivity analysis is routinely used to identify points of fragility or robustness in biochemical networks. However, intracellular systems often contain components that number in the thousands to tens or less and consequently motivate a stochastic treatment. Although methodologies exist to quantify sensitivities in stochastic models, they differ substantially from those used in deterministic regimes. Therefore it is not possible to tell whether observed differences in sensitivity measured in deterministic and stochastic elaborations of the same network are the result of methodology or model form. The authors introduce here a distribution-based methodology to measure sensitivity that is equally applicable in both regimes, and demonstrate its use and applicability on a sophisticated mathematical model of the mouse circadian clock that is available in both deterministic and stochastic variants. The authors use the method to produce sensitivity measurements on both variants. They note that the rank-order sensitivity of the clock to parametric perturbations is extremely well conserved across several orders of magnitude. The data show that the clock is fragile to perturbations in parameters common to the cellular machinery ('global' parameters) and robust to perturbations in parameters that are clock-specific ('local' parameters). The sensitivity measure can be used to reduce the model from its original 73 ordinary differential equations (ODEs) to 18 ODEs and to predict the degree to which parametric perturbation can distort the phase response curve of the clock. Finally, the method is employed to evaluate the effect of transcriptional and translational noise on clock function. [Includes supplementary material].

摘要

经典的敏感性分析通常用于识别生化网络中的脆弱或稳健点。然而,细胞内系统通常包含数以千计到数十个或更少的组件,因此需要进行随机处理。尽管存在量化随机模型敏感性的方法,但它们与确定性模型中使用的方法有很大的不同。因此,无法确定在同一网络的确定性和随机细化中测量的敏感性差异是由于方法还是模型形式造成的。作者在这里介绍了一种基于分布的敏感性测量方法,该方法在两种情况下同样适用,并在可用确定性和随机变体的小鼠生物钟复杂数学模型上演示了其使用和适用性。作者使用该方法对两个变体进行了敏感性测量。他们注意到,时钟对参数扰动的敏感性排序在几个数量级上都得到了极好的保持。数据表明,时钟对常见于细胞机制的参数扰动(“全局”参数)很脆弱,对特定于时钟的参数扰动(“局部”参数)很稳健。该敏感性度量可用于将模型从其原始的 73 个常微分方程 (ODE) 减少到 18 个 ODE,并预测参数扰动会使时钟相位响应曲线失真的程度。最后,该方法用于评估转录和翻译噪声对时钟功能的影响。[包括补充材料]。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验