Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01002, USA.
BMC Bioinformatics. 2013 Oct 22;14:311. doi: 10.1186/1471-2105-14-311.
Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space.
We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks.
As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address questions on parameter identifiability, estimation and robustness. The proposed method is tested and validated on three biochemical systems, namely: (a) a protein production/degradation model where explicit solutions are available, permitting a careful assessment of the method, (b) the p53 reaction network where quasi-steady stochastic oscillations of the concentrations are observed, and for which continuum approximations (e.g. mean field, stochastic Langevin, etc.) break down due to persistent oscillations between high and low populations, and (c) an Epidermal Growth Factor Receptor model which is an example of a high-dimensional stochastic reaction network with more than 200 reactions and a corresponding number of parameters.
随机建模和模拟为深入了解复杂生化网络中的基本机制提供了强大的预测方法。通常情况下,这种数学模型涉及到大量参数的耦合跳跃随机过程网络,这些参数需要根据实验数据进行适当的校准。在这个方向上,反应网络的参数敏感性分析是一种必不可少的数学和计算工具,可以提供关于模型参数的鲁棒性和可识别性的信息。然而,现有的敏感性分析方法,如有限差分法的变体,在具有高维参数空间的模型中可能会有巨大的计算成本。
我们开发了一种适用于具有大量参数的复杂随机反应网络的敏感性分析方法。所提出的方法基于信息论方法,依赖于量化由于参数扰动引起的时间序列分布之间的信息损失。为此,我们需要在路径空间中工作,即包含所有随机轨迹的集合,因此所提出的方法被称为“沿路径”。通过使用严格推导的相对熵率来实现沿路径的敏感性分析方法,该相对熵率可以直接从倾向函数中计算出来。该方法的一个关键方面是定义了一个相关的沿路径 Fisher 信息矩阵(FIM),它反过来构成了一种定量参数敏感性的无梯度方法。FIM 的结构是分块对角的,揭示了反应网络中隐藏的参数依赖性和敏感性。
作为一种无梯度方法,所提出的敏感性分析在处理具有大量参数的复杂随机系统时具有显著的优势。此外,对 FIM 结构的了解可以有效地解决参数可识别性、估计和鲁棒性的问题。所提出的方法在三个生化系统上进行了测试和验证,分别是:(a)蛋白质产生/降解模型,其中有明确的解,可以仔细评估该方法;(b)p53 反应网络,其中观察到浓度的准稳态随机振荡,由于高和低种群之间的持续振荡,连续近似(例如均值场、随机 Langevin 等)失效;(c)表皮生长因子受体模型,它是一个具有 200 多个反应和相应数量参数的高维随机反应网络的例子。