Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8645-50. doi: 10.1073/pnas.1015814108. Epub 2011 May 6.
We present a novel and simple method to numerically calculate Fisher information matrices for stochastic chemical kinetics models. The linear noise approximation is used to derive model equations and a likelihood function that leads to an efficient computational algorithm. Our approach reduces the problem of calculating the Fisher information matrix to solving a set of ordinary differential equations. This is the first method to compute Fisher information for stochastic chemical kinetics models without the need for Monte Carlo simulations. This methodology is then used to study sensitivity, robustness, and parameter identifiability in stochastic chemical kinetics models. We show that significant differences exist between stochastic and deterministic models as well as between stochastic models with time-series and time-point measurements. We demonstrate that these discrepancies arise from the variability in molecule numbers, correlations between species, and temporal correlations and show how this approach can be used in the analysis and design of experiments probing stochastic processes at the cellular level. The algorithm has been implemented as a Matlab package and is available from the authors upon request.
我们提出了一种新颖而简单的方法,可用于数值计算随机化学动力学模型的 Fisher 信息矩阵。我们使用线性噪声逼近来推导出模型方程和似然函数,从而得到一种有效的计算算法。我们的方法将计算 Fisher 信息矩阵的问题简化为求解一组常微分方程。这是第一种无需进行蒙特卡罗模拟即可计算随机化学动力学模型的 Fisher 信息矩阵的方法。然后,我们使用该方法研究了随机化学动力学模型中的敏感性、鲁棒性和参数可识别性。我们表明,随机模型与确定性模型之间以及具有时间序列和时间点测量的随机模型之间存在显著差异。我们证明这些差异源于分子数量的可变性、物种之间的相关性以及时间相关性,并展示了如何在分析和设计实验以探测细胞水平的随机过程时使用这种方法。该算法已实现为 Matlab 包,并可应要求提供给作者。