Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.
Microb Biotechnol. 2009 Mar;2(2):164-77. doi: 10.1111/j.1751-7915.2008.00078.x. Epub 2009 Jan 13.
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non-phenolic phenylpropanoid units form a complex three-dimensional network linked by a variety of ether and carbon-carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one-electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide-generating oxidases. These peroxidases poses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non-phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl-free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure-function information currently available is being used to build tailor-made peroxidases and other oxidoreductases as industrial biocatalysts.
木质素是维管植物细胞壁中第二丰富的成分,它保护纤维素免受腐生和致病微生物的水解攻击。木质素的去除代表了陆地生态系统中碳循环的关键步骤,也是植物生物质工业利用的核心问题。由于其分子结构,木质素聚合物对化学和生物降解具有很强的抗性,其中不同的非酚类苯基丙烷单元形成了一个复杂的三维网络,通过各种醚键和碳-碳键连接。木质素分解微生物已经开发出一种独特的策略来处理木质素降解,基于细胞外过氧化物酶协同作用下,对不同木质素亚结构中的苯环进行非特异性单电子氧化。这些过氧化物酶具有两个突出的特点:(i)由于血红素口袋结构,它们具有异常高的氧化还原电位,能够氧化非酚类芳环;(ii)它们能够通过电子转移到血红素辅基形成蛋白氧化剂,在蛋白表面形成催化色氨酸自由基,从而与体积庞大的木质素聚合物相互作用。目前可用的结构-功能信息正被用于构建定制的过氧化物酶和其他氧化还原酶作为工业生物催化剂。