Suppr超能文献

利用抑制性网络结构揭示时空模式形成机制。

Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning.

作者信息

Assisi Collins, Stopfer Mark, Bazhenov Maxim

机构信息

Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA.

出版信息

Neuron. 2011 Jan 27;69(2):373-86. doi: 10.1016/j.neuron.2010.12.019.

Abstract

Neuronal networks exhibit a rich dynamical repertoire, a consequence of both the intrinsic properties of neurons and the structure of the network. It has been hypothesized that inhibitory interneurons corral principal neurons into transiently synchronous ensembles that encode sensory information and subserve behavior. How does the structure of the inhibitory network facilitate such spatiotemporal patterning? We established a relationship between an important structural property of a network, its colorings, and the dynamics it constrains. Using a model of the insect antennal lobe, we show that our description allows the explicit identification of the groups of inhibitory interneurons that switch, during odor stimulation, between activity and quiescence in a coordinated manner determined by features of the network structure. This description optimally matches the perspective of the downstream neurons looking for synchrony in ensembles of presynaptic cells and allows a low-dimensional description of seemingly complex high-dimensional network activity.

摘要

神经元网络展现出丰富的动态特性,这是神经元内在特性和网络结构共同作用的结果。据推测,抑制性中间神经元将主要神经元聚集到瞬时同步的集合中,这些集合编码感觉信息并服务于行为。抑制性网络的结构是如何促进这种时空模式形成的呢?我们建立了网络的一种重要结构属性——其着色,与它所约束的动力学之间的关系。利用昆虫触角叶模型,我们表明,我们的描述能够明确识别出在气味刺激期间,以由网络结构特征所决定的协调方式在活动和静止之间切换的抑制性中间神经元群体。这种描述与在突触前细胞集合中寻找同步性的下游神经元的视角最佳匹配,并允许对看似复杂的高维网络活动进行低维描述。

相似文献

6
A large-scale model of the locust antennal lobe.一个大规模的蝗虫触角叶模型。
J Comput Neurosci. 2009 Dec;27(3):553-67. doi: 10.1007/s10827-009-0169-z. Epub 2009 Jun 23.
8
Linking dynamics of the inhibitory network to the input structure.将抑制性网络的动力学与输入结构相联系。
J Comput Neurosci. 2016 Dec;41(3):367-391. doi: 10.1007/s10827-016-0622-8. Epub 2016 Sep 21.

引用本文的文献

5
Neural Circuit Dynamics for Sensory Detection.神经回路动力学与感觉检测
J Neurosci. 2020 Apr 22;40(17):3408-3423. doi: 10.1523/JNEUROSCI.2185-19.2020. Epub 2020 Mar 12.
6
Optimality of sparse olfactory representations is not affected by network plasticity.稀疏嗅觉表示的最优性不受网络可塑性的影响。
PLoS Comput Biol. 2020 Feb 3;16(2):e1007461. doi: 10.1371/journal.pcbi.1007461. eCollection 2020 Feb.
8
Differential effects of adaptation on odor discrimination.适应对气味辨别能力的不同影响。
J Neurophysiol. 2018 Jul 1;120(1):171-185. doi: 10.1152/jn.00389.2017. Epub 2018 Mar 28.
10
Linking dynamics of the inhibitory network to the input structure.将抑制性网络的动力学与输入结构相联系。
J Comput Neurosci. 2016 Dec;41(3):367-391. doi: 10.1007/s10827-016-0622-8. Epub 2016 Sep 21.

本文引用的文献

2
4
Frequency transitions in odor-evoked neural oscillations.气味诱发神经振荡的频率转换。
Neuron. 2009 Dec 10;64(5):692-706. doi: 10.1016/j.neuron.2009.10.004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验