Suppr超能文献

一种用于强度调制质子治疗的高效剂量计算策略。

An efficient dose calculation strategy for intensity modulated proton therapy.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Phys Med Biol. 2011 Feb 21;56(4):N71-84. doi: 10.1088/0031-9155/56/4/N03. Epub 2011 Jan 25.

Abstract

While intensity-modulated proton therapy (IMPT) has great potential to improve the therapeutic efficacy of radiotherapy, IMPT optimization can be computationally demanding, particularly for large and complex tumors. Here we propose a dose calculation strategy to accelerate IMPT optimization while reducing memory requirements. By using two adjustable threshold parameters, our method separates dose contributions from proton beamlets into major and minor components for each dose voxel. The optimization proceeds with two levels of iterations: in inner iterations, doses are updated in correspondence with changes in beamlet intensities from only the major contributions while keeping the portions from the minor contributions constant; in outer iterations, doses are recalculated exactly by considering both major and minor contributions. Since the number of elements in the influence matrix for major contributions is relatively small, each inner iteration proceeds quickly. Each outer iteration requires a longer computation time, but only a few such iterations are needed. Our study shows that the proposed strategy leads to nearly identical dose distributions as those optimized with the full influence matrix, but reducing computing time by at least a factor of 3 and internal memory requirements by a factor of 10 or more. In addition, we show that the proposed approach could enhance other optimization-related applications such as optimizing beam angles. By using an advanced lung cancer case that would demand large computing resources by conventional optimization approach, we show how our method may potentially help improve IMPT treatment planning in real clinical situations.

摘要

虽然强度调制质子治疗(IMPT)有很大潜力提高放射治疗的疗效,但 IMPT 的优化可能需要大量的计算资源,特别是对于大型和复杂的肿瘤。在这里,我们提出了一种剂量计算策略,可以在减少内存需求的同时加速 IMPT 优化。通过使用两个可调阈值参数,我们的方法将来自质子束的剂量贡献分为每个剂量体素的主要和次要分量。优化过程分为两个层次的迭代:在内层迭代中,剂量根据仅来自主要贡献的束流强度变化进行更新,而保持次要贡献的部分不变;在外层迭代中,通过考虑主要和次要贡献来精确地重新计算剂量。由于主要贡献的影响矩阵中的元素数量相对较少,因此每个内层迭代都很快。每个外层迭代需要更长的计算时间,但只需要几个这样的迭代。我们的研究表明,所提出的策略可以得到与使用完整影响矩阵优化的几乎相同的剂量分布,但计算时间至少减少了 3 倍,内部内存需求减少了 10 倍或更多。此外,我们还表明,该方法可以增强其他与优化相关的应用,如优化射束角度。通过使用传统优化方法需要大量计算资源的先进肺癌病例,我们展示了我们的方法如何可能有助于改善实际临床情况下的 IMPT 治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验