Wang Zhuo, Millet Larry, Mir Mustafa, Ding Huafeng, Unarunotai Sakulsuk, Rogers John, Gillette Martha U, Popescu Gabriel
Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Opt Express. 2011 Jan 17;19(2):1016-26. doi: 10.1364/OE.19.001016.
We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale.
我们提出了空间光干涉显微镜(SLIM),这是一种新的光学显微镜技术,能够通过干涉测量法测量活细胞中的纳米级结构和动力学。SLIM结合了光成像中的两个经典理念:泽尼克相衬显微镜,它能生成透明标本的高对比度强度图像;以及伽柏全息术,它记录来自物体的相位信息。因此,SLIM揭示了细胞结构的内在对比度,此外,还能生成整个样品的定量光程图。由此产生的地形精度与原子力显微镜相当,而采集速度则快1000倍。我们通过对大鼠脑原代细胞培养物进行实验,展示了通过SLIM对细胞动力学的全新见解。SLIM作为现有相衬显微镜的一个附加模块来实现,这可能对大规模影响光学显微镜领域具有重要作用。