Mukherjee Shoutik, Babadi Behtash, Shamma Shihab
Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America.
Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America.
PLoS Comput Biol. 2025 Jan 2;21(1):e1012721. doi: 10.1371/journal.pcbi.1012721. eCollection 2025 Jan.
Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs hence impedes understanding how acoustic stimulus representations are transformed along the auditory pathway. Here, we focus on the relationship between ferret primary auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG). We propose estimating receptive fields in PEG with respect to a well-established high-dimensional computational model of primary-cortical stimulus representations. These "cortical receptive fields" (CortRF) are estimated greedily to identify the salient primary-cortical features modulating spiking responses and in turn related to corresponding spectrotemporal features. Hence, they provide biologically plausible hierarchical decompositions of STRFs in PEG. Such CortRF analysis was applied to PEG neuronal responses to speech and temporally orthogonal ripple combination (TORC) stimuli and, for comparison, to A1 neuronal responses. CortRFs of PEG neurons captured their selectivity to more complex spectrotemporal features than A1 neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses to speech. Our results thus suggest that secondary-cortical stimulus representations can be computed as sparse combinations of primary-cortical features that facilitate encoding natural stimuli. Thus, by adding the primary-cortical representation, we can account for PEG single-unit responses to natural sounds better than bypassing it and considering as input the auditory spectrogram. These results confirm with explicit details the presumed hierarchical organization of the auditory cortex.
表征神经元对自然刺激的反应仍然是感觉神经科学的核心目标。在听觉皮层神经元中,诱发的尖峰活动的刺激选择性由频谱时间感受野(STRF)概括,该感受野将神经元反应与刺激频谱图联系起来。尽管STRF在表征初级听觉皮层反应方面很有效,但非初级听觉神经元的STRF可能相当复杂,反映了它们的混合选择性。因此,非初级STRF的复杂性阻碍了我们对声音刺激表征如何沿听觉通路转换的理解。在这里,我们重点关注雪貂初级听觉皮层(A1)和二级区域背侧后外侧沟回(PEG)之间的关系。我们建议根据已建立的初级皮层刺激表征的高维计算模型来估计PEG中的感受野。这些“皮层感受野”(CortRF)通过贪婪算法进行估计,以识别调节尖峰反应并进而与相应频谱时间特征相关的显著初级皮层特征。因此,它们为PEG中的STRF提供了生物学上合理的层次分解。这种CortRF分析应用于PEG神经元对语音和时间正交波纹组合(TORC)刺激的反应,并作为比较,也应用于A1神经元的反应。PEG神经元的CortRF比A1神经元捕捉到了它们对更复杂频谱时间特征的选择性;此外,CortRF模型对PEG(而非A1)对语音的反应具有更强的预测能力。我们的结果因此表明,二级皮层刺激表征可以计算为初级皮层特征的稀疏组合,这有助于对自然刺激进行编码。因此,通过加入初级皮层表征,我们能够比绕过它并将听觉频谱图作为输入更好地解释PEG对自然声音的单单元反应。这些结果以明确的细节证实了听觉皮层假定的层次组织。