Suppr超能文献

在分类中对未知特征值的知情推断。

Informed inferences of unknown feature values in categorization.

机构信息

Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

Mem Cognit. 2011 May;39(4):666-74. doi: 10.3758/s13421-010-0044-1.

Abstract

Many current computational models of object categorization either include no explicit provisions for dealing with incomplete stimulus information (e.g. Kruschke, Psychological Review 99:22-44, 1992) or take approaches that are at odds with evidence from other fields (e.g. Verguts, Ameel, & Storms, Memory & Cognition 32:379-389, 2004). In two experiments centered around the inverse base-rate effect, we demonstrate that people not only make highly informed inferences about the values of unknown features, but also subsequently use the inferred values to come to a categorization decision. The inferences appear to be based on immediately available information about the particular stimulus under consideration, as well as on higher-level inferences about the stimulus class as a whole. Implications for future modeling efforts are discussed.

摘要

许多当前的物体分类计算模型要么没有明确规定来处理不完整的刺激信息(例如,Kruschke,《心理学评论》99:22-44,1992),要么采取与其他领域证据不一致的方法(例如,Verguts、Ameel 和 Storms,《记忆与认知》32:379-389,2004)。在两项以逆基率效应为中心的实验中,我们证明人们不仅对未知特征的值做出高度知情的推断,而且还随后使用推断的值来做出分类决策。这些推断似乎基于正在考虑的特定刺激的即时可用信息,以及对整个刺激类别的更高层次推断。讨论了对未来建模工作的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验