Suppr超能文献

基于共振光学隧穿效应的光流体折射仪。

Optofluidic refractometer using resonant optical tunneling effect.

出版信息

Biomicrofluidics. 2010 Dec 30;4(4):43008. doi: 10.1063/1.3502671.

Abstract

This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.

摘要

本文提出了一种基于共振光学隧穿效应(ROTE)的液体折射率传感器的设计与分析。该传感器由两个半圆柱形棱镜、两个气隙和一个微流道组成。所有部分都可以使用光学树脂 NOA81 进行微加工。理论研究表明,这种 ROTE 传感器具有极其陡峭的传输峰,实现了 760nm/折射率单位(RIU)的灵敏度和 85000 RIU(-1)的探测率。虽然灵敏度小于典型的表面等离子体共振(SPR)传感器(3200nm/RIU),与 95%反射率法布里-珀罗(FP)标准具相当(440nm/RIU),但探测率比 SPR 传感器高 17000 倍,比 FP 标准具高 85 倍。这种 ROTE 传感器有可能实现超高的灵敏度 10(-9)RIU,比目前方法的最佳结果高两个数量级。

相似文献

1
Optofluidic refractometer using resonant optical tunneling effect.
Biomicrofluidics. 2010 Dec 30;4(4):43008. doi: 10.1063/1.3502671.
2
An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses.
Biomicrofluidics. 2010 May 24;4(2):024107. doi: 10.1063/1.3430605.
4
Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor.
Sensors (Basel). 2022 Dec 1;22(23):9377. doi: 10.3390/s22239377.
5
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.
Sensors (Basel). 2017 Feb 17;17(2):389. doi: 10.3390/s17020389.
6
A Microfluidic-Based Fabry-Pérot Gas Sensor.
Micromachines (Basel). 2016 Feb 25;7(3):36. doi: 10.3390/mi7030036.
7
Photonic Crystal Fiber SPR Liquid Sensor Based on Elliptical Detective Channel.
Micromachines (Basel). 2021 Apr 7;12(4):408. doi: 10.3390/mi12040408.
8
Ultrasensitive optofluidic coupled Fabry-Perot capillary sensors.
Opt Express. 2022 Dec 5;30(25):45070-45081. doi: 10.1364/OE.474132.
9
Temperature Sensor Based on Side-Polished Fiber SPR Device Coated with Polymer.
Sensors (Basel). 2019 Sep 20;19(19):4063. doi: 10.3390/s19194063.
10
High-Q Fabry⁻Pérot Micro-Cavities for High-Sensitivity Volume Refractometry.
Micromachines (Basel). 2018 Jan 31;9(2):54. doi: 10.3390/mi9020054.

引用本文的文献

1
Optofluidics Refractometers.
Micromachines (Basel). 2018 Mar 20;9(3):136. doi: 10.3390/mi9030136.
2
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.
Sensors (Basel). 2017 Feb 17;17(2):389. doi: 10.3390/s17020389.
3
A microfluidics assisted porous silicon array for optical label-free biochemical sensing.
Biomicrofluidics. 2011 Sep;5(3):34120-3412010. doi: 10.1063/1.3626008. Epub 2011 Aug 24.
4
Preface to special topic: optofluidics.
Biomicrofluidics. 2010 Dec 30;4(4):42901. doi: 10.1063/1.3533774.

本文引用的文献

1
An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses.
Biomicrofluidics. 2010 May 24;4(2):024107. doi: 10.1063/1.3430605.
2
Whispering-gallery mode micro-kylix resonators.
Opt Express. 2009 May 25;17(11):9434-41. doi: 10.1364/oe.17.009434.
3
Refractive index sensor based on surface-plasmon interference.
Opt Lett. 2009 Feb 1;34(3):392-4. doi: 10.1364/ol.34.000392.
4
Ultrasensitive photonic crystal fiber refractive index sensor.
Opt Lett. 2009 Feb 1;34(3):322-4. doi: 10.1364/ol.34.000322.
5
Instruments in analysis--critical reviews: development of the differential refractometer.
Talanta. 1976 Oct;23(10):747-52. doi: 10.1016/0039-9140(76)80081-1.
6
Optical coherence refractometry.
Opt Lett. 2008 Oct 1;33(19):2272-4. doi: 10.1364/ol.33.002272.
7
Whispering-gallery-mode biosensing: label-free detection down to single molecules.
Nat Methods. 2008 Jul;5(7):591-6. doi: 10.1038/nmeth.1221.
9
Microfluidic stickers.
Lab Chip. 2008 Feb;8(2):274-9. doi: 10.1039/b712368j. Epub 2007 Nov 22.
10
Weighing of biomolecules, single cells and single nanoparticles in fluid.
Nature. 2007 Apr 26;446(7139):1066-9. doi: 10.1038/nature05741.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验