Biomicrofluidics. 2010 Dec 30;4(4):43008. doi: 10.1063/1.3502671.
This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.
本文提出了一种基于共振光学隧穿效应(ROTE)的液体折射率传感器的设计与分析。该传感器由两个半圆柱形棱镜、两个气隙和一个微流道组成。所有部分都可以使用光学树脂 NOA81 进行微加工。理论研究表明,这种 ROTE 传感器具有极其陡峭的传输峰,实现了 760nm/折射率单位(RIU)的灵敏度和 85000 RIU(-1)的探测率。虽然灵敏度小于典型的表面等离子体共振(SPR)传感器(3200nm/RIU),与 95%反射率法布里-珀罗(FP)标准具相当(440nm/RIU),但探测率比 SPR 传感器高 17000 倍,比 FP 标准具高 85 倍。这种 ROTE 传感器有可能实现超高的灵敏度 10(-9)RIU,比目前方法的最佳结果高两个数量级。