Suppr超能文献

醛糖还原酶基因缺失可拮抗 C57BL/6 小鼠糖尿病肾病的发展。

Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice.

机构信息

Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, People's Republic of China.

出版信息

Diabetologia. 2011 May;54(5):1242-51. doi: 10.1007/s00125-011-2045-4. Epub 2011 Jan 27.

Abstract

AIMS/HYPOTHESIS: The aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy.

METHODS

A line of Ar (also known as Akr1b3)-knockout (KO) mice, a line of Ar-bitransgenic mice and control C57BL/6 mice were used in the study. The KO and bitransgenic mice were deficient for Ar in the renal glomeruli and all other tissues, with the exception of, in the bitransgenic mice, a human AR cDNA knockin-transgene that directed collecting-tubule epithelial-cell-specific AR expression. Diabetes was induced in 8-week-old male mice with streptozotocin. Mice were further maintained for 17 weeks then killed. A number of serum and urinary variables were determined for these 25-week-old mice. Periodic acid-Schiff staining, western blots, immunohistochemistry and protein kinase C (PKC) activity assays were performed for histological analyses, and to determine the levels of collagen IV and TGF-β1 and PKC activities in renal cortical tissues.

RESULTS

Diabetes-induced extracellular matrix accumulation and collagen IV overproduction were completely prevented in diabetic Ar-KO and bitransgenic mice. Ar deficiency also completely or partially prevented diabetes-induced activation of renal cortical PKC, TGF-β1 and glomerular hypertrophy. Loss of Ar results in a 43% reduction in urine albumin excretion in the diabetic Ar-KO mice and a 48% reduction in the diabetic bitransgenic mice (p < 0.01).

CONCLUSIONS/INTERPRETATION: Genetic deficiency of Ar significantly ameliorated development of key endpoints linked with early diabetic nephropathy in vivo. Robust and specific inhibition of aldose reductase might be an effective strategy for the prevention and treatment of diabetic nephropathy.

摘要

目的/假设:本研究旨在探讨小鼠醛糖还原酶基因缺失对糖尿病肾病关键终点的发展的影响。

方法

本研究使用了 Ar(也称为 Akr1b3)敲除(KO)小鼠、Ar 双转基因小鼠和对照 C57BL/6 小鼠。KO 和双转基因小鼠在肾小球和所有其他组织中缺乏 Ar,但在双转基因小鼠中,除了人类 AR cDNA 敲入转基因外,该转基因可指导集合管上皮细胞特异性 AR 表达。8 周龄雄性小鼠用链脲佐菌素诱导糖尿病。进一步将小鼠维持 17 周后处死。对这些 25 周龄小鼠进行了多项血清和尿液变量的测定。进行了过碘酸希夫染色、western blot、免疫组化和蛋白激酶 C(PKC)活性测定,以进行组织学分析,并确定肾皮质组织中胶原 IV 和 TGF-β1 的水平以及 PKC 活性。

结果

糖尿病诱导的细胞外基质积累和胶原 IV 过度产生在糖尿病 Ar-KO 和双转基因小鼠中完全被预防。Ar 缺乏也完全或部分预防了糖尿病诱导的肾皮质 PKC、TGF-β1 和肾小球肥大的激活。在糖尿病 Ar-KO 小鼠中,Ar 的缺失导致尿白蛋白排泄减少 43%,在糖尿病双转基因小鼠中减少 48%(p<0.01)。

结论/解释:Ar 的基因缺失显著改善了体内与早期糖尿病肾病相关的关键终点的发展。醛糖还原酶的强力和特异性抑制可能是预防和治疗糖尿病肾病的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f5/3071933/5a93033256aa/125_2011_2045_Fig1_HTML.jpg

相似文献

1
Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice.
Diabetologia. 2011 May;54(5):1242-51. doi: 10.1007/s00125-011-2045-4. Epub 2011 Jan 27.
4
Plasminogen activator inhibitor-1 production is pathogenetic in experimental murine diabetic renal disease.
Diabetologia. 2007 Jun;50(6):1315-26. doi: 10.1007/s00125-007-0652-x. Epub 2007 Apr 6.
5
Aldose reductase expression as a risk factor for cataract.
Chem Biol Interact. 2015 Jun 5;234:247-53. doi: 10.1016/j.cbi.2014.12.017. Epub 2014 Dec 22.
6
Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy.
Metabolism. 2020 Feb;103:154013. doi: 10.1016/j.metabol.2019.154013. Epub 2019 Nov 15.
7
NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney.
Free Radic Biol Med. 2015 Jun;83:21-30. doi: 10.1016/j.freeradbiomed.2015.02.009. Epub 2015 Feb 18.
8
Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
Diabetologia. 2016 Feb;59(2):379-89. doi: 10.1007/s00125-015-3796-0. Epub 2015 Oct 28.

引用本文的文献

1
Aldo-keto reductase (AKR) superfamily website and database: An update.
Chem Biol Interact. 2024 Aug 1;398:111111. doi: 10.1016/j.cbi.2024.111111. Epub 2024 Jun 13.
2
Pathomechanisms of Diabetic Kidney Disease.
J Clin Med. 2023 Nov 27;12(23):7349. doi: 10.3390/jcm12237349.
4
The role of protein kinase C in diabetic microvascular complications.
Front Endocrinol (Lausanne). 2022 Aug 17;13:973058. doi: 10.3389/fendo.2022.973058. eCollection 2022.
5
Aldose Reductase: a cause and a potential target for the treatment of diabetic complications.
Arch Pharm Res. 2021 Jul;44(7):655-667. doi: 10.1007/s12272-021-01343-5. Epub 2021 Jul 19.
6
Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease.
Biomedicines. 2020 Feb 22;8(2):40. doi: 10.3390/biomedicines8020040.
7
Redox imbalance stress in diabetes mellitus: Role of the polyol pathway.
Animal Model Exp Med. 2018 Mar;1(1):7-13. doi: 10.1002/ame2.12001. Epub 2018 Apr 19.
8
Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis.
Oncotarget. 2017 May 10;8(40):66987-67000. doi: 10.18632/oncotarget.17791. eCollection 2017 Sep 15.
9
Aldose reductase mediates endothelial cell dysfunction induced by high uric acid concentrations.
Cell Commun Signal. 2017 Jan 5;15(1):3. doi: 10.1186/s12964-016-0158-6.
10
The aldo-keto reductases (AKRs): Overview.
Chem Biol Interact. 2015 Jun 5;234:236-46. doi: 10.1016/j.cbi.2014.09.024. Epub 2014 Oct 7.

本文引用的文献

1
Oxidative stress in diabetic nephropathy.
Curr Med Chem. 2010;17(34):4256-69. doi: 10.2174/092986710793348581.
2
Aldose reductase inhibitors and diabetic kidney disease.
Curr Opin Investig Drugs. 2010 Apr;11(4):402-17.
3
4
Oxidative stress as a major culprit in kidney disease in diabetes.
Diabetes. 2008 Jun;57(6):1446-54. doi: 10.2337/db08-0057.
6
The role of protein kinase C activation in diabetic nephropathy.
Kidney Int Suppl. 2007 Aug(106):S49-53. doi: 10.1038/sj.ki.5002386.
7
Regulation of transforming growth factor beta in diabetic nephropathy: implications for treatment.
Semin Nephrol. 2007 Mar;27(2):153-60. doi: 10.1016/j.semnephrol.2007.01.008.
9
Genetic restoration of aldose reductase to the collecting tubules restores maturation of the urine concentrating mechanism.
Am J Physiol Renal Physiol. 2006 Jul;291(1):F186-95. doi: 10.1152/ajprenal.00506.2005. Epub 2006 Jan 31.
10
Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications.
Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1543-52. doi: 10.1089/ars.2005.7.1543.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验