Suppr超能文献

联合 X 射线、NMR 和动力学分析揭示丙型肝炎病毒 NS3-NS4A 蛋白酶抑制剂 BI 201335 的不常见结合特征。

Combined X-ray, NMR, and kinetic analyses reveal uncommon binding characteristics of the hepatitis C virus NS3-NS4A protease inhibitor BI 201335.

机构信息

Boehringer Ingelheim (Canada) Ltd., Research and Development, Laval, Quebec, Canada.

出版信息

J Biol Chem. 2011 Apr 1;286(13):11434-43. doi: 10.1074/jbc.M110.211417. Epub 2011 Jan 26.

Abstract

Hepatitis C virus infection, a major cause of liver disease worldwide, is curable, but currently approved therapies have suboptimal efficacy. Supplementing these therapies with direct-acting antiviral agents has the potential to considerably improve treatment prospects for hepatitis C virus-infected patients. The critical role played by the viral NS3 protease makes it an attractive target, and despite its shallow, solvent-exposed active site, several potent NS3 protease inhibitors are currently in the clinic. BI 201335, which is progressing through Phase IIb trials, contains a unique C-terminal carboxylic acid that binds noncovalently to the active site and a bromo-quinoline substitution on its proline residue that provides significant potency. In this work we have used stopped flow kinetics, x-ray crystallography, and NMR to characterize these distinctive features. Key findings include: slow association and dissociation rates within a single-step binding mechanism; the critical involvement of water molecules in acid binding; and protein side chain rearrangements, a bromine-oxygen halogen bond, and profound pK(a) changes within the catalytic triad associated with binding of the bromo-quinoline moiety.

摘要

丙型肝炎病毒感染是全球范围内主要的肝脏疾病病因,可治愈,但目前批准的治疗方法疗效不佳。用直接作用抗病毒药物补充这些疗法有可能极大地改善丙型肝炎病毒感染患者的治疗前景。病毒 NS3 蛋白酶所起的关键作用使其成为一个有吸引力的靶标,尽管其活性位点较浅,溶剂暴露,但目前已有几种有效的 NS3 蛋白酶抑制剂在临床应用中。处于 IIb 期临床试验阶段的 BI 201335 含有独特的 C 末端羧酸,可非共价结合到活性位点,其脯氨酸残基上的溴喹啉取代基提供了显著的效力。在这项工作中,我们使用停流动力学、X 射线晶体学和 NMR 来描述这些独特的特征。主要发现包括:在单步结合机制中,缓慢的缔合和解离速率;水分子在酸结合中的关键作用;以及与溴喹啉部分结合相关的蛋白质侧链重排、溴-氧卤键和催化三联体中显著的 pK(a)变化。

相似文献

引用本文的文献

2
Geometric Deep Learning for Structure-Based Ligand Design.用于基于结构的配体设计的几何深度学习
ACS Cent Sci. 2023 Nov 17;9(12):2257-2267. doi: 10.1021/acscentsci.3c00572. eCollection 2023 Dec 27.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验