Powers Alexander S, Yu Helen H, Suriana Patricia, Koodli Rohan V, Lu Tianyu, Paggi Joseph M, Dror Ron O
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Department of Computer Science, Stanford University, Stanford, California 94305, United States.
ACS Cent Sci. 2023 Nov 17;9(12):2257-2267. doi: 10.1021/acscentsci.3c00572. eCollection 2023 Dec 27.
A pervasive challenge in drug design is determining how to expand a ligand-a small molecule that binds to a target biomolecule-in order to improve various properties of the ligand. Adding single chemical groups, known as fragments, is important for lead optimization tasks, and adding multiple fragments is critical for fragment-based drug design. We have developed a comprehensive framework that uses machine learning and three-dimensional protein-ligand structures to address this challenge. Our method, FRAME, iteratively determines where on a ligand to add fragments, selects fragments to add, and predicts the geometry of the added fragments. On a comprehensive benchmark, FRAME consistently improves predicted affinity and selectivity relative to the initial ligand, while generating molecules with more drug-like chemical properties than docking-based methods currently in widespread use. FRAME learns to accurately describe molecular interactions despite being given no prior information on such interactions. The resulting framework for quality molecular hypothesis generation can be easily incorporated into the workflows of medicinal chemists for diverse tasks, including lead optimization, fragment-based drug discovery, and drug design.
药物设计中一个普遍存在的挑战是确定如何扩展配体(一种与目标生物分子结合的小分子),以改善配体的各种特性。添加单个化学基团(即片段)对于先导优化任务很重要,而添加多个片段对于基于片段的药物设计至关重要。我们开发了一个综合框架,该框架使用机器学习和三维蛋白质-配体结构来应对这一挑战。我们的方法FRAME迭代地确定在配体上何处添加片段,选择要添加的片段,并预测添加片段的几何形状。在一个全面的基准测试中,相对于初始配体,FRAME持续提高了预测的亲和力和选择性,同时生成了比目前广泛使用的基于对接的方法具有更多类药物化学性质的分子。尽管没有关于此类相互作用的先验信息,FRAME仍能学会准确描述分子间相互作用。由此产生的高质量分子假设生成框架可以很容易地纳入药物化学家的工作流程,用于各种任务,包括先导优化、基于片段的药物发现和药物设计。