Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
J Am Chem Soc. 2011 Feb 23;133(7):2183-91. doi: 10.1021/ja107691w. Epub 2011 Jan 27.
Proteins of the cryptochrome/photolyase family share high sequence similarities, common folds, and the flavin adenine dinucleotide (FAD) cofactor, but exhibit diverse physiological functions. Mammalian cryptochromes are essential regulatory components of the 24 h circadian clock, whereas (6-4) photolyases recognize and repair UV-induced DNA damage by using light energy absorbed by FAD. Despite increasing knowledge about physiological functions from genetic analyses, the molecular mechanisms and conformational dynamics involved in clock signaling and DNA repair remain poorly understood. The (6-4) photolyase, which has strikingly high similarity to human clock cryptochromes, is a prototypic biological system to study conformational dynamics of cryptochrome/photolyase family proteins. The entire light-dependent DNA repair process for (6-4) photolyase can be reproduced in a simple in vitro system. To decipher pivotal reactions of the common FAD cofactor, we accomplished time-resolved measurements of radical formation, diffusion, and protein conformational changes during light-dependent repair by full-length (6-4) photolyase on DNA carrying a single UV-induced damage. The (6-4) photolyase by itself showed significant volume changes after blue-light activation, indicating protein conformational changes distant from the flavin cofactor. A drastic diffusion change was observed only in the presence of both (6-4) photolyase and damaged DNA, and not for (6-4) photolyase alone or with undamaged DNA. Thus, we propose that this diffusion change reflects the rapid (50 μs time constant) dissociation of the protein from the repaired DNA product. Conformational changes with such fast turnover would likely enable DNA repair photolyases to access the entire genome in cells.
隐色体/光解酶家族的蛋白质具有高度的序列相似性、共同的折叠结构和黄素腺嘌呤二核苷酸 (FAD) 辅因子,但表现出多样化的生理功能。哺乳动物隐色体是 24 小时生物钟的重要调节成分,而 (6-4) 光解酶通过利用 FAD 吸收的光能来识别和修复 UV 诱导的 DNA 损伤。尽管从遗传分析中获得了越来越多的关于生理功能的知识,但时钟信号和 DNA 修复所涉及的分子机制和构象动力学仍知之甚少。(6-4) 光解酶与人类时钟隐色体具有惊人的高度相似性,是研究隐色体/光解酶家族蛋白质构象动力学的典型生物体系。(6-4) 光解酶的整个光依赖性 DNA 修复过程可以在简单的体外系统中重现。为了解密共同 FAD 辅因子的关键反应,我们通过全长 (6-4) 光解酶在携带单个 UV 诱导损伤的 DNA 上完成了光依赖性修复过程中自由基形成、扩散和蛋白质构象变化的时间分辨测量。(6-4) 光解酶本身在蓝光激活后显示出显著的体积变化,表明远离黄素辅因子的蛋白质构象变化。只有在存在 (6-4) 光解酶和受损 DNA 的情况下才观察到剧烈的扩散变化,而 (6-4) 光解酶单独或与未受损 DNA 不存在这种变化。因此,我们提出这种扩散变化反映了蛋白质从修复的 DNA 产物中的快速 (50 μs 时间常数) 解离。具有如此快速周转的构象变化可能使 DNA 修复光解酶能够在细胞中访问整个基因组。