King's College London, London, UK.
Neuroimage. 2011 May 1;56(1):212-9. doi: 10.1016/j.neuroimage.2011.01.050. Epub 2011 Jan 25.
The hippocampus is involved at the onset of the neuropathological pathways leading to Alzheimer's disease (AD). Individuals with mild cognitive impairment (MCI) are at increased risk of AD. Hippocampal volume has been shown to predict which MCI subjects will convert to AD. Our aim in the present study was to produce a fully automated prognostic procedure, scalable to high throughput clinical and research applications, for the prediction of MCI conversion to AD using 3D hippocampal morphology. We used an automated analysis for the extraction and mapping of the hippocampus from structural magnetic resonance scans to extract 3D hippocampal shape morphology, and we then applied machine learning classification to predict conversion from MCI to AD. We investigated the accuracy of prediction in 103 MCI subjects (mean age 74.1 years) from the longitudinal AddNeuroMed study. Our model correctly predicted MCI conversion to dementia within a year at an accuracy of 80% (sensitivity 77%, specificity 80%), a performance which is competitive with previous predictive models dependent on manual measurements. Categorization of MCI subjects based on hippocampal morphology revealed more rapid cognitive deterioration in MMSE scores (p<0.01) and CERAD verbal memory (p<0.01) in those subjects who were predicted to develop dementia relative to those predicted to remain stable. The pattern of atrophy associated with increased risk of conversion demonstrated initial degeneration in the anterior part of the cornus ammonis 1 (CA1) hippocampal subregion. We conclude that automated shape analysis generates sensitive measurements of early neurodegeneration which predates the onset of dementia and thus provides a prognostic biomarker for conversion of MCI to AD.
海马体参与了导致阿尔茨海默病(AD)的神经病理途径的发生。轻度认知障碍(MCI)患者患 AD 的风险增加。已经证明海马体体积可以预测哪些 MCI 患者会发展为 AD。我们在本研究中的目的是开发一种完全自动化的预测程序,该程序可扩展到高通量的临床和研究应用,以使用 3D 海马形态学预测 MCI 向 AD 的转化。我们使用自动化分析从结构磁共振扫描中提取和映射海马体,以提取 3D 海马体形状形态,然后应用机器学习分类来预测从 MCI 到 AD 的转化。我们调查了来自纵向 AddNeuroMed 研究的 103 名 MCI 患者(平均年龄 74.1 岁)的预测准确性。我们的模型在一年内正确预测了 MCI 向痴呆的转化,准确率为 80%(敏感性为 77%,特异性为 80%),这与依赖于手动测量的先前预测模型的性能相当。基于海马形态的 MCI 患者分类显示,与预测稳定的患者相比,那些预测为发展为痴呆的患者在 MMSE 评分(p<0.01)和 CERAD 言语记忆(p<0.01)方面认知恶化更快。与增加的转化风险相关的萎缩模式表现为 Cornu ammonis 1(CA1)海马亚区前部的早期变性。我们得出结论,自动形状分析生成了对早期神经退行性变的敏感测量,该测量早于痴呆的发生,因此为 MCI 向 AD 的转化提供了预后生物标志物。