Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.
Neuroimage. 2011 May 1;56(1):52-60. doi: 10.1016/j.neuroimage.2011.01.049. Epub 2011 Jan 27.
This article introduces a hypometabolic convergence index (HCI) for the assessment of Alzheimer's disease (AD); compares it to other biological, cognitive and clinical measures; and demonstrates its promise to predict clinical decline in mild cognitive impairment (MCI) patients using data from the AD Neuroimaging Initiative (ADNI). The HCI is intended to reflect in a single measurement the extent to which the pattern and magnitude of cerebral hypometabolism in an individual's fluorodeoxyglucose positron emission tomography (FDG-PET) image correspond to that in probable AD patients, and is generated using a fully automated voxel-based image-analysis algorithm. HCIs, magnetic resonance imaging (MRI) hippocampal volume measurements, cerebrospinal fluid (CSF) assays, memory test scores, and clinical ratings were compared in 47 probable AD patients, 21 MCI patients who converted to probable AD within the next 18months, 76 MCI patients who did not, and 47 normal controls (NCs) in terms of their ability to characterize clinical disease severity and predict conversion rates from MCI to probable AD. HCIs were significantly different in the probable AD, MCI converter, MCI stable and NC groups (p=9e-17) and correlated with clinical disease severity. Using retrospectively characterized threshold criteria, MCI patients with either higher HCIs or smaller hippocampal volumes had the highest hazard ratios (HRs) for 18-month progression to probable AD (7.38 and 6.34, respectively), and those with both had an even higher HR (36.72). In conclusion, the HCI, alone or in combination with certain other biomarker measurements, has the potential to help characterize AD and predict subsequent rates of clinical decline. More generally, our conversion index strategy could be applied to a range of imaging modalities and voxel-based image-analysis algorithms.
这篇文章介绍了一种用于评估阿尔茨海默病(AD)的低代谢收敛指数(HCI);将其与其他生物学、认知和临床测量方法进行了比较;并使用 AD 神经影像学倡议(ADNI)的数据证明了其在预测轻度认知障碍(MCI)患者临床衰退方面的潜力。HCI 旨在通过个体的氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)图像中的脑代谢降低模式和幅度与可能的 AD 患者的相应模式和幅度相对应,来反映在单个测量中,该指数是通过使用完全自动化的体素基图像分析算法生成的。在 47 名可能的 AD 患者、21 名在接下来的 18 个月内转化为可能的 AD 的 MCI 患者、76 名未转化为可能的 AD 的 MCI 患者和 47 名正常对照组(NCs)中,比较了 HCI、磁共振成像(MRI)海马体积测量值、脑脊液(CSF)测定值、记忆测试评分和临床评分,以确定其在描述临床疾病严重程度和预测 MCI 向 AD 转化的转换率方面的能力。在可能的 AD、MCI 转化者、MCI 稳定者和 NC 组中,HCI 显著不同(p=9e-17),并且与临床疾病严重程度相关。使用回顾性特征化的阈值标准,具有较高 HCI 或较小海马体积的 MCI 患者在 18 个月内进展为可能的 AD 的风险比(HR)最高(分别为 7.38 和 6.34),而具有两者的患者的 HR 更高(36.72)。总之,HCI 单独或与某些其他生物标志物测量相结合,有可能帮助描述 AD 并预测随后的临床衰退率。更一般地说,我们的转换指数策略可以应用于一系列成像模式和体素基图像分析算法。