Suppr超能文献

基于流形的脑-体神经旁路直接控制研究

An Investigation of Manifold-Based Direct Control for a Brain-to-Body Neural Bypass.

作者信息

Losanno E, Badi M, Roussinova E, Bogaard A, Delacombaz M, Shokur S, Micera S

机构信息

The Biorobotics Institute and Department of Excellence in Robotics and AIScuola Superiore Sant'Anna 56025 Pisa Italy.

Modular Implantable Neuroprostheses (MINE) LaboratoryUniversità Vita-Salute San Raffaele and Scuola Superiore Sant'Anna Milan Italy.

出版信息

IEEE Open J Eng Med Biol. 2024 Mar 25;5:271-280. doi: 10.1109/OJEMB.2024.3381475. eCollection 2024.

Abstract

Brain-body interfaces (BBIs) have emerged as a very promising solution for restoring voluntary hand control in people with upper-limb paralysis. The BBI module decoding motor commands from brain signals should provide the user with intuitive, accurate, and stable control. Here, we present a preliminary investigation in a monkey of a brain decoding strategy based on the direct coupling between the activity of intrinsic neural ensembles and output variables, aiming at achieving ease of learning and long-term robustness. We identified an intrinsic low-dimensional space (called manifold) capturing the co-variation patterns of the monkey's neural activity associated to reach-to-grasp movements. We then tested the animal's ability to directly control a computer cursor using cortical activation along the manifold axes. By daily recalibrating only scaling factors, we achieved rapid learning and stable high performance in simple, incremental 2D tasks over more than 12 weeks of experiments. Finally, we showed that this brain decoding strategy can be effectively coupled to peripheral nerve stimulation to trigger voluntary hand movements. These results represent a proof of concept of manifold-based direct control for BBI applications.

摘要

脑机接口(BBIs)已成为恢复上肢瘫痪患者自主手部控制的一种非常有前景的解决方案。从脑信号中解码运动指令的脑机接口模块应向用户提供直观、准确和稳定的控制。在此,我们对一只猴子进行了一项初步研究,该研究采用基于内在神经集合活动与输出变量直接耦合的脑解码策略,旨在实现易于学习和长期稳健性。我们确定了一个内在低维空间(称为流形),它捕捉了与抓握动作相关的猴子神经活动的协变模式。然后,我们测试了动物沿着流形轴使用皮层激活直接控制计算机光标的能力。通过每天仅重新校准缩放因子,我们在超过12周的实验中的简单增量二维任务中实现了快速学习和稳定的高性能。最后,我们表明这种脑解码策略可以有效地与外周神经刺激相结合,以触发自主手部运动。这些结果代表了基于流形的直接控制在脑机接口应用中的概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/11100864/9bfb5b605c3f/micer1-3381475.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验