Suppr超能文献

三重奏——区分疾病对人类微生物组网络影响的有前途的计算生物标志物。

Trios-promising in silico biomarkers for differentiating the effect of disease on the human microbiome network.

机构信息

Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.

出版信息

Sci Rep. 2017 Oct 16;7(1):13259. doi: 10.1038/s41598-017-12959-3.

Abstract

Recent advances in the HMP (human microbiome project) research have revealed profound implications of the human microbiome to our health and diseases. We postulated that there should be distinctive features associated with healthy and/or diseased microbiome networks. Following Occam's razor principle, we further hypothesized that triangle motifs or trios, arguably the simplest motif in a complex network of the human microbiome, should be sufficient to detect changes that occurred in the diseased microbiome. Here we test our hypothesis with six HMP datasets that cover five major human microbiome sites (gut, lung, oral, skin, and vaginal). The tests confirm our hypothesis and demonstrate that the trios involving the special nodes (e.g., most abundant OTU or MAO, and most dominant OTU or MDO, etc.) and interactions types (positive vs. negative) can be a powerful tool to differentiate between healthy and diseased microbiome samples. Our findings suggest that 12 kinds of trios (especially, dominantly inhibitive trio with mixed strategy, dominantly inhibitive trio with pure strategy, and fully facilitative strategy) may be utilized as in silico biomarkers for detecting disease-associated changes in the human microbiome, and may play an important role in personalized precision diagnosis of the human microbiome associated diseases.

摘要

人类微生物组计划(HMP)研究的最新进展揭示了人类微生物组对我们健康和疾病的深远影响。我们推测,健康和/或患病的微生物组网络应该具有独特的特征。根据奥卡姆剃刀原理,我们进一步假设三角形基序或三元组(可以说是人类微生物组复杂网络中最简单的基序)足以检测到患病微生物组中发生的变化。在这里,我们使用涵盖五个主要人体微生物组部位(肠道、肺部、口腔、皮肤和阴道)的六个 HMP 数据集来检验我们的假设。测试结果证实了我们的假设,并表明涉及特殊节点(例如,最丰富的 OTU 或 MAO,以及最占优势的 OTU 或 MDO 等)和相互作用类型(阳性与阴性)的三元组可以成为区分健康和患病微生物组样本的有力工具。我们的研究结果表明,12 种三元组(特别是混合策略占主导地位的抑制性三元组、纯策略占主导地位的抑制性三元组和完全促进性策略)可用作检测人类微生物组中与疾病相关变化的计算生物标志物,并可能在与人类微生物组相关疾病的个性化精准诊断中发挥重要作用。

相似文献

5
Proteomics and the microbiome: pitfalls and potential.蛋白质组学与微生物组:陷阱与潜能。
Expert Rev Proteomics. 2019 Jun;16(6):501-511. doi: 10.1080/14789450.2018.1523724. Epub 2018 Sep 28.
9
The Oral Microbiome Bank of China.中国口腔微生物组银行。
Int J Oral Sci. 2018 May 3;10(2):16. doi: 10.1038/s41368-018-0018-x.

引用本文的文献

2
MicNet toolbox: Visualizing and unraveling a microbial network.MicNet 工具包:可视化和剖析微生物网络。
PLoS One. 2022 Jun 24;17(6):e0259756. doi: 10.1371/journal.pone.0259756. eCollection 2022.
3
Fast and flexible analysis of linked microbiome data with mako.使用 mako 快速灵活地分析关联微生物组数据。
Nat Methods. 2022 Jan;19(1):51-54. doi: 10.1038/s41592-021-01335-9. Epub 2021 Dec 9.

本文引用的文献

3
Microbial "social networks".微生物“社交网络”。
BMC Genomics. 2015;16 Suppl 11(Suppl 11):S6. doi: 10.1186/1471-2164-16-S11-S6. Epub 2015 Nov 10.
8
Current innovations and future challenges of network motif detection.网络基序检测的当前创新与未来挑战。
Brief Bioinform. 2015 May;16(3):497-525. doi: 10.1093/bib/bbu021. Epub 2014 Jun 24.
9
The microbial contribution to macroecology.微生物对宏观生态学的贡献。
Front Microbiol. 2014 May 5;5:203. doi: 10.3389/fmicb.2014.00203. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验