Suppr超能文献

一种新颖的基于知识的系统生物学方法,用于在遗传干预下进行表型预测。

A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention.

机构信息

Department of Chemistry and Biochemistry, 4254 Urey Hall, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0359, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2011 Sep-Oct;8(5):1170-82. doi: 10.1109/TCBB.2011.18.

Abstract

Deciphering the biological networks underlying complex phenotypic traits, e.g., human disease is undoubtedly crucial to understand the underlying molecular mechanisms and to develop effective therapeutics. Due to the network complexity and the relatively small number of available experiments, data-driven modeling is a great challenge for deducing the functions of genes/proteins in the network and in phenotype formation. We propose a novel knowledge-driven systems biology method that utilizes qualitative knowledge to construct a Dynamic Bayesian network (DBN) to represent the biological network underlying a specific phenotype. Edges in this network depict physical interactions between genes and/or proteins. A qualitative knowledge model first translates typical molecular interactions into constraints when resolving the DBN structure and parameters. Therefore, the uncertainty of the network is restricted to a subset of models which are consistent with the qualitative knowledge. All models satisfying the constraints are considered as candidates for the underlying network. These consistent models are used to perform quantitative inference. By in silico inference, we can predict phenotypic traits upon genetic interventions and perturbing in the network. We applied our method to analyze the puzzling mechanism of breast cancer cell proliferation network and we accurately predicted cancer cell growth rate upon manipulating (anti)cancerous marker genes/proteins.

摘要

解析复杂表型特征(例如人类疾病)背后的生物网络,无疑对于理解潜在的分子机制和开发有效的治疗方法至关重要。由于网络的复杂性和可用实验的相对较少,数据驱动的建模对于推断网络和表型形成中基因/蛋白质的功能是一个巨大的挑战。我们提出了一种新的知识驱动的系统生物学方法,该方法利用定性知识构建动态贝叶斯网络(DBN)来表示特定表型背后的生物网络。该网络中的边描绘了基因和/或蛋白质之间的物理相互作用。定性知识模型首先将典型的分子相互作用转化为在解析 DBN 结构和参数时的约束条件。因此,网络的不确定性被限制在与定性知识一致的模型子集内。所有满足约束条件的模型都被视为潜在网络的候选模型。这些一致的模型用于进行定量推断。通过计算机推断,我们可以预测基因干预和网络扰动后表型的特征。我们将我们的方法应用于分析乳腺癌细胞增殖网络的令人困惑的机制,并准确预测了操纵(抗癌)标记基因/蛋白质后癌细胞的生长速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a5/3211072/fcea9249a14c/nihms330289f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验