Suppr超能文献

通过预测局部结构来预测蛋白质的灵活性。

Predicting protein flexibility through the prediction of local structures.

机构信息

INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), University Paris-Diderot, Institut National de Transfusion Sanguine, INTS, 6, rue Alexandre Cabanel, 75739 Paris cedex 15, France.

出版信息

Proteins. 2011 Mar;79(3):839-52. doi: 10.1002/prot.22922. Epub 2010 Dec 6.

Abstract

Protein structures are valuable tools for understanding protein function. However, protein dynamics is also considered a key element in protein function. Therefore, in addition to structural analysis, fully understanding protein function at the molecular level now requires accounting for flexibility. However, experimental techniques that produce both types of information simultaneously are still limited. Prediction approaches are useful alternative tools for obtaining otherwise unavailable data. It has been shown that protein structure can be described by a limited set of recurring local structures. In this context, we previously established a library composed of 120 overlapping long structural prototypes (LSPs) representing fragments of 11 residues in length and covering all known local protein structures. On the basis of the close sequence-structure relationship observed in LSPs, we developed a novel prediction method that proposes structural candidates in terms of LSPs along a given sequence. The prediction accuracy rate was high given the number of structural classes. In this study, we use this methodology to predict protein flexibility. We first examine flexibility according to two different descriptors, the B-factor and root mean square fluctuations from molecular dynamics simulations. We then show the relevance of using both descriptors together. We define three flexibility classes and propose a method based on the LSP prediction method for predicting flexibility along the sequence. The prediction rate reaches 49.6%. This method competes rather efficiently with the most recent, cutting-edge methods based on true flexibility data learning with sophisticated algorithms. Accordingly, flexibility information should be taken into account in structural prediction assessments.

摘要

蛋白质结构是理解蛋白质功能的有价值的工具。然而,蛋白质动力学也被认为是蛋白质功能的关键要素。因此,除了结构分析,现在要在分子水平上全面了解蛋白质功能,还需要考虑其灵活性。然而,能够同时产生这两种信息的实验技术仍然有限。预测方法是获得其他无法获得的数据的有用替代工具。已经表明,蛋白质结构可以用一组有限的重复出现的局部结构来描述。在这种情况下,我们之前建立了一个由 120 个重叠的长结构原型(LSP)组成的库,这些原型代表 11 个残基长的片段,覆盖了所有已知的局部蛋白质结构。基于在 LSP 中观察到的紧密的序列-结构关系,我们开发了一种新的预测方法,该方法根据给定序列中的 LSP 提出结构候选。考虑到结构类别的数量,预测准确率很高。在这项研究中,我们使用这种方法来预测蛋白质的灵活性。我们首先根据两个不同的描述符,即分子动力学模拟的 B 因子和均方根波动来检查灵活性。然后,我们展示了同时使用这两个描述符的相关性。我们定义了三个灵活性类别,并提出了一种基于 LSP 预测方法的方法,用于预测序列上的灵活性。预测率达到 49.6%。该方法与基于真实灵活性数据学习和复杂算法的最新、最先进的方法竞争相当有效。因此,在结构预测评估中应该考虑灵活性信息。

相似文献

1
Predicting protein flexibility through the prediction of local structures.
Proteins. 2011 Mar;79(3):839-52. doi: 10.1002/prot.22922. Epub 2010 Dec 6.
2
PredyFlexy: flexibility and local structure prediction from sequence.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W317-22. doi: 10.1093/nar/gks482. Epub 2012 Jun 11.
3
In silico prediction of protein flexibility with local structure approach.
Biochimie. 2019 Oct;165:150-155. doi: 10.1016/j.biochi.2019.07.025. Epub 2019 Aug 1.
4
Assessing a novel approach for predicting local 3D protein structures from sequence.
Proteins. 2006 Mar 1;62(4):865-80. doi: 10.1002/prot.20815.
5
A new prediction strategy for long local protein structures using an original description.
Proteins. 2009 Aug 15;76(3):570-87. doi: 10.1002/prot.22370.
9
Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C.
J Chem Theory Comput. 2021 Jul 13;17(7):4614-4628. doi: 10.1021/acs.jctc.1c00341. Epub 2021 Jun 25.
10

引用本文的文献

2
Impact of Ruxolitinib Interactions on JAK2 JH1 Domain Dynamics.
Int J Mol Sci. 2025 Apr 15;26(8):3727. doi: 10.3390/ijms26083727.
3
Exploration of potential inhibitors against chikungunya envelope: an in-silico clue.
In Silico Pharmacol. 2025 Apr 7;13(1):55. doi: 10.1007/s40203-025-00351-3. eCollection 2025.
6
Repurposing doxycycline for the inhibition of monkeypox virus DNA polymerase: a comprehensive computational study.
In Silico Pharmacol. 2025 Feb 13;13(1):27. doi: 10.1007/s40203-025-00307-7. eCollection 2025.
9
Predicting of novel homoserine dehydrogenase inhibitors against : integrating and approaches.
Future Microbiol. 2024;19(17):1475-1488. doi: 10.1080/17460913.2024.2398332. Epub 2024 Sep 13.
10
Sequence, Structure, and Functional Space of Drosophila De Novo Proteins.
Genome Biol Evol. 2024 Aug 5;16(8). doi: 10.1093/gbe/evae176.

本文引用的文献

1
A short survey on protein blocks.
Biophys Rev. 2010 Aug;2(3):137-147. doi: 10.1007/s12551-010-0036-1. Epub 2010 Aug 5.
2
Global dynamics of proteins: bridging between structure and function.
Annu Rev Biophys. 2010;39:23-42. doi: 10.1146/annurev.biophys.093008.131258.
4
Backbone flexibility in computational protein design.
Curr Opin Biotechnol. 2009 Aug;20(4):420-8. doi: 10.1016/j.copbio.2009.07.006. Epub 2009 Aug 24.
5
Predicting intrinsic disorder in proteins: an overview.
Cell Res. 2009 Aug;19(8):929-49. doi: 10.1038/cr.2009.87.
7
On the relation between residue flexibility and local solvent accessibility in proteins.
Proteins. 2009 Aug 15;76(3):617-36. doi: 10.1002/prot.22375.
8
A new prediction strategy for long local protein structures using an original description.
Proteins. 2009 Aug 15;76(3):570-87. doi: 10.1002/prot.22370.
9
The unfoldomics decade: an update on intrinsically disordered proteins.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2164-9-S2-S1.
10
Biochemistry. How do proteins interact?
Science. 2008 Jun 13;320(5882):1429-30. doi: 10.1126/science.1158818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验