Suppr超能文献

PredyFlexy:基于序列的柔性和局部结构预测。

PredyFlexy: flexibility and local structure prediction from sequence.

机构信息

INSERM, U665, DSIMB, Paris, France.

出版信息

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W317-22. doi: 10.1093/nar/gks482. Epub 2012 Jun 11.

Abstract

Protein structures are necessary for understanding protein function at a molecular level. Dynamics and flexibility of protein structures are also key elements of protein function. So, we have proposed to look at protein flexibility using novel methods: (i) using a structural alphabet and (ii) combining classical X-ray B-factor data and molecular dynamics simulations. First, we established a library composed of structural prototypes (LSPs) to describe protein structure by a limited set of recurring local structures. We developed a prediction method that proposes structural candidates in terms of LSPs and predict protein flexibility along a given sequence. Second, we examine flexibility according to two different descriptors: X-ray B-factors considered as good indicators of flexibility and the root mean square fluctuations, based on molecular dynamics simulations. We then define three flexibility classes and propose a method based on the LSP prediction method for predicting flexibility along the sequence. This method does not resort to sophisticate learning of flexibility but predicts flexibility from average flexibility of predicted local structures. The method is implemented in PredyFlexy web server. Results are similar to those obtained with the most recent, cutting-edge methods based on direct learning of flexibility data conducted with sophisticated algorithms. PredyFlexy can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/.

摘要

蛋白质结构是理解蛋白质分子水平功能所必需的。蛋白质结构的动态性和柔韧性也是蛋白质功能的关键要素。因此,我们提出使用新方法来研究蛋白质的柔韧性:(i)使用结构字母表,以及(ii)结合经典 X 射线 B 因子数据和分子动力学模拟。首先,我们建立了一个由结构原型(LSP)组成的库,以有限的一组重复的局部结构来描述蛋白质结构。我们开发了一种预测方法,该方法根据 LSP 提出结构候选,并预测给定序列上的蛋白质柔韧性。其次,我们根据两个不同的描述符来检查柔韧性:X 射线 B 因子被认为是柔韧性的良好指标,以及基于分子动力学模拟的均方根波动。然后,我们定义了三个柔韧性类别,并提出了一种基于 LSP 预测方法的方法,用于预测序列上的柔韧性。该方法不依赖于对柔韧性的复杂学习,而是从预测的局部结构的平均柔韧性来预测柔韧性。该方法已在 PredyFlexy 网络服务器中实现。结果与最近基于直接学习柔韧性数据的最先进方法相似,这些方法使用复杂的算法进行了研究。PredyFlexy 可在 http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/ 访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e0f/3394303/3da99859170b/gks482f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验