Suppr超能文献

用于蛋白质柔性和波动分析的快速各向异性柔性-刚性指数

Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis.

作者信息

Opron Kristopher, Xia Kelin, Wei Guo-Wei

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824, USA.

Department of Mathematics, Michigan State University, Michigan 48824, USA.

出版信息

J Chem Phys. 2014 Jun 21;140(23):234105. doi: 10.1063/1.4882258.

Abstract

Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N(2)). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal mode analysis and Gaussian network model (GNM). The accuracy of the FRI method is tested using four sets of proteins, three sets of relatively small-, medium-, and large-sized structures and an extended set of 365 proteins. A fifth set of proteins is used to compare the efficiency of the FRI, fFRI, aFRI, and GNM methods. Intensive validation and comparison indicate that the FRI, particularly the fFRI, is orders of magnitude more efficient and about 10% more accurate overall than some of the most popular methods in the field. The proposed fFRI is able to predict B-factors for α-carbons of the HIV virus capsid (313 236 residues) in less than 30 seconds on a single processor using only one core. Finally, we demonstrate the application of FRI and aFRI to protein domain analysis.

摘要

蛋白质结构波动通常由德拜-瓦勒因子(Debye-Waller factors)或B因子来衡量,它是蛋白质灵活性的一种表现,与蛋白质功能密切相关。灵活性-刚性指数(FRI)是一种新提出的方法,用于构建连续介质弹性理论中所需的原子刚性函数,该理论结合了原子刚性,是一种用于描述超大生物分子系统的新多尺度形式。FRI方法分析蛋白质的刚性和灵活性,并且能够在不进行矩阵对角化的情况下预测蛋白质B因子。FRI中使用的一个基本假设是,蛋白质结构由各种内部和外部相互作用唯一确定,而蛋白质功能,如稳定性和灵活性,则完全由结构决定。因此,人们可以在不借助蛋白质相互作用哈密顿量的情况下预测蛋白质的灵活性。因此,绕过矩阵对角化,原始的FRI具有O(N(2))的计算复杂度。这项工作引入了一种用于大分子灵活性分析的快速FRI(fFRI)算法。所提出的fFRI进一步将计算复杂度降低到O(N)。此外,我们还提出了各向异性FRI(aFRI)算法用于分析蛋白质集体动力学。aFRI算法允许使用自适应海森矩阵,从完全全局的3N×3N矩阵到完全局部的3×3矩阵。这些3×3矩阵尽管是局部计算的,但也包含非局部相关信息。从所提出的aFRI算法获得的特征向量能够展示集体运动。此外,我们通过使用四类径向基相关函数来研究FRI的性能。探索了参数优化和无参数的FRI方法。此外,我们将FRI的准确性和效率与一些已确立的灵活性分析方法进行了比较,即正常模式分析和高斯网络模型(GNM)。使用四组蛋白质测试了FRI方法的准确性,三组分别为相对较小、中等和较大尺寸的结构,以及一组包含365种蛋白质的扩展数据集。使用第五组蛋白质来比较FRI、fFRI、aFRI和GNM方法的效率。大量的验证和比较表明,FRI,特别是fFRI,比该领域一些最流行的方法效率高几个数量级,总体准确性高约10%。所提出的fFRI能够在单处理器上仅使用一个核心,在不到30秒的时间内预测HIV病毒衣壳(313 236个残基)α-碳原子的B因子。最后,我们展示了FRI和aFRI在蛋白质结构域分析中的应用。

相似文献

1
2
Multiscale multiphysics and multidomain models--flexibility and rigidity.
J Chem Phys. 2013 Nov 21;139(19):194109. doi: 10.1063/1.4830404.
3
Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM).
J Chem Phys. 2015 Nov 28;143(20):204106. doi: 10.1063/1.4936132.
4
Flexibility-rigidity index for protein-nucleic acid flexibility and fluctuation analysis.
J Comput Chem. 2016 May 30;37(14):1283-95. doi: 10.1002/jcc.24320. Epub 2016 Mar 1.
5
Communication: Capturing protein multiscale thermal fluctuations.
J Chem Phys. 2015 Jun 7;142(21):211101. doi: 10.1063/1.4922045.
6
Generalized flexibility-rigidity index.
J Chem Phys. 2016 Jun 21;144(23):234106. doi: 10.1063/1.4953851.
7
Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
Adv Exp Med Biol. 2014;805:107-35. doi: 10.1007/978-3-319-02970-2_5.
8
Multiscale weighted colored graphs for protein flexibility and rigidity analysis.
J Chem Phys. 2018 Feb 7;148(5):054103. doi: 10.1063/1.5016562.
10
Towards accurate modeling of noncovalent interactions for protein rigidity analysis.
BMC Bioinformatics. 2013;14 Suppl 18(Suppl 18):S3. doi: 10.1186/1471-2105-14-S18-S3. Epub 2013 Nov 5.

引用本文的文献

1
Multi-scale Jones polynomial and persistent Jones polynomial for knot data analysis.
AIMS Math. 2025;10(1):1463-1487. doi: 10.3934/math.2025068. Epub 2025 Jan 22.
2
Persistent Sheaf Laplacian Analysis of Protein Flexibility.
J Phys Chem B. 2025 May 1;129(17):4169-4178. doi: 10.1021/acs.jpcb.5c01287. Epub 2025 Apr 22.
3
Machine learning predictions from unpredictable chaos.
ArXiv. 2025 Mar 19:arXiv:2503.14956v1.
4
Multiscale Differential Geometry Learning for Protein Flexibility Analysis.
J Comput Chem. 2025 Mar 15;46(7):e70073. doi: 10.1002/jcc.70073.
6
Knot data analysis using multiscale Gauss link integral.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2408431121. doi: 10.1073/pnas.2408431121. Epub 2024 Oct 11.
7
Multiscale differential geometry learning of networks with applications to single-cell RNA sequencing data.
Comput Biol Med. 2024 Mar;171:108211. doi: 10.1016/j.compbiomed.2024.108211. Epub 2024 Feb 28.
8
B-factor prediction in proteins using a sequence-based deep learning model.
Patterns (N Y). 2023 Aug 4;4(9):100805. doi: 10.1016/j.patter.2023.100805. eCollection 2023 Sep 8.
9
Protein Function Analysis through Machine Learning.
Biomolecules. 2022 Sep 6;12(9):1246. doi: 10.3390/biom12091246.
10
Geometric algebra generation of molecular surfaces.
J R Soc Interface. 2022 Apr;19(189):20220117. doi: 10.1098/rsif.2022.0117. Epub 2022 Apr 13.

本文引用的文献

1
Multiscale multiphysics and multidomain models--flexibility and rigidity.
J Chem Phys. 2013 Nov 21;139(19):194109. doi: 10.1063/1.4830404.
2
Coarse grained normal mode analysis vs. refined Gaussian Network Model for protein residue-level structural fluctuations.
Bull Math Biol. 2013 Jan;75(1):124-60. doi: 10.1007/s11538-012-9797-y. Epub 2013 Jan 8.
3
Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.
Proteins. 2012 Jul;80(7):1766-79. doi: 10.1002/prot.24072. Epub 2012 Apr 13.
4
ProDy: protein dynamics inferred from theory and experiments.
Bioinformatics. 2011 Jun 1;27(11):1575-7. doi: 10.1093/bioinformatics/btr168. Epub 2011 Apr 5.
5
Microtubule elasticity: connecting all-atom simulations with continuum mechanics.
Phys Rev Lett. 2010 Jan 8;104(1):018101. doi: 10.1103/PhysRevLett.104.018101. Epub 2010 Jan 4.
6
A flexible docking scheme to explore the binding selectivity of PDZ domains.
Protein Sci. 2010 May;19(5):914-28. doi: 10.1002/pro.366.
8
Structural flexibility in proteins: impact of the crystal environment.
Bioinformatics. 2008 Feb 15;24(4):521-8. doi: 10.1093/bioinformatics/btm625. Epub 2007 Dec 18.
9
Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations.
Biophys J. 2007 Oct 1;93(7):2289-99. doi: 10.1529/biophysj.107.105270. Epub 2007 Jun 8.
10
vGNM: a better model for understanding the dynamics of proteins in crystals.
J Mol Biol. 2007 Jun 8;369(3):880-93. doi: 10.1016/j.jmb.2007.03.059. Epub 2007 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验