Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan.
J Neurosci. 2011 Feb 2;31(5):1919-33. doi: 10.1523/JNEUROSCI.5128-10.2011.
During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning.
在大脑早期发育过程中,大部分腹侧端脑(基板)区域被进一步细分为三个区域,即外侧(LGE)、内侧(MGE)和尾侧(CGE)神经节隆起。在这项研究中,我们系统地在小鼠胚胎干细胞(ESC)培养物中再现了基板的模式形成,并研究了模式形成信号的时间和组合作用。在无血清悬浮培养中,ESC 衍生的端脑神经上皮的背腹侧特化取决于 Sonic hedgehog(Shh)信号的浓度。早期 Shh 处理,甚至在 Foxg1(也称为 Bf1;端脑谱系的最早标志物)表达开始之前,对于有效地产生 LGE 祖细胞是至关重要的,并且持续的 Shh 信号直到第 9 天对于将这些细胞定向到 LGE 谱系是必要的。在这些条件下诱导并通过荧光激活细胞分选纯化后,端脑细胞有效地分化为 Nolz1(+) / Ctip2(+) LGE 神经元前体,随后,无论是在培养中还是在体内移植后,都分化为 DARPP32(+)中型棘突神经元。用高剂量 Hedgehog(Hh)激动剂 SAG(Smoothened 激动剂)处理的纯化端脑祖细胞分化为 MGE 和 CGE 样组织。有趣的是,除了强烈的 Hh 信号外,MGE 细胞的有效特化还需要 Fgf8 信号,但 Fgf15/19 处理会抑制其特化。相反,CGE 分化受 Fgf15/19 促进,但受 Fgf8 抑制,这表明特定的 Fgf 信号在 ESC 衍生的腹侧基板组织的位置特化中发挥不同的关键作用。我们讨论了在基板头尾部模式形成中拮抗的 Fgf8 和 Fgf15/19 信号的模型,并将其与这些分子在皮质模式形成中的作用进行了比较。