Laboratory of Biomechanical Engineering, University of Twente, The Netherlands.
Spine (Phila Pa 1976). 2011 Jun 15;36(14):E929-35. doi: 10.1097/BRS.0b013e3181fd7f7f.
A validated finite element model of an L3-L4 motion segment is used to analyze the effects of interpersonal differences in geometry on spinal stiffness.
The objective of this study is to determine which of the interpersonal variations of the geometry of the spine have a large effect on spinal stiffness. This will improve patient-specific modeling.
The parameters that define the geometry of a motion segment are vertebral height, disc height, endplate width, endplate depth, spinous process length, transverse process width, nucleus size, lordosis angle, facet area, facet orientation, and the cross-sectional areas of the ligaments. All these parameters differ between patients. The influence of each parameter on spinal stiffness is largely unknown and such knowledge would greatly help in patient-specific modeling of the spine.
The range of interpersonal variation of each of the geometric parameters was set at mean±2SD (covering 95% of the population). Subsequently, we determined the effect of each of these ranges on the bending stiffness in flexion, extension, axial rotation, and lateral bending.
Disc height had the largest influence; a maximal disc height reduced the spinal stiffness to 75-86% of the mean motion segment stiffness, and a minimal disc height increased the spinal stiffness to 154-226% of the mean motion segment stiffness. Lordosis angle, transversal and longitudinal facet angle, endplate depth, and area of the capsular ligament also had a substantial influence (>5%) on the stiffness, but considerable less than the influence of the disc height. Ligament areas, nucleus size, spinous process length, and length of processes are of negligible effect (<2%) on the stiffness.
The disc height should be accurately determined in patients to estimate the spinal stiffness. Ligament areas, nucleus size, spinous process length, and transverse process width do not need patient-specific modeling.
使用经过验证的 L3-L4 运动节段有限元模型来分析人体之间解剖结构差异对脊柱刚度的影响。
本研究旨在确定脊柱几何形状的个体间差异中哪些对脊柱刚度有较大影响。这将改善针对患者的建模。
定义运动节段几何形状的参数包括椎体高度、椎间盘高度、终板宽度、终板深度、棘突长度、横突宽度、核大小、前凸角、关节突面积、关节突方向以及韧带的横截面积。所有这些参数在患者之间都存在差异。每个参数对脊柱刚度的影响在很大程度上是未知的,而这些知识将极大地帮助脊柱的个体化建模。
将每个几何参数的个体间变异范围设定为平均值±2SD(涵盖 95%的人群)。随后,我们确定了这些范围中的每一个对前屈、伸展、轴向旋转和侧屈时弯曲刚度的影响。
椎间盘高度的影响最大;最大椎间盘高度使脊柱刚度降低至平均运动节段刚度的 75-86%,最小椎间盘高度使脊柱刚度增加至平均运动节段刚度的 154-226%。前凸角、横突和纵突角、终板深度以及囊状韧带的面积对刚度也有很大的影响(>5%),但不及椎间盘高度的影响大。韧带面积、核大小、棘突长度和过程长度对刚度的影响可忽略不计(<2%)。
为了估计脊柱刚度,应在患者中准确确定椎间盘高度。韧带面积、核大小、棘突长度和横突宽度不需要针对患者的建模。