Suppr超能文献

I 型脱水奎宁酸脱水酶中的保守表面环定位活性位点精氨酸并在底物结合中发挥作用。

A conserved surface loop in type I dehydroquinate dehydratases positions an active site arginine and functions in substrate binding.

机构信息

Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.

出版信息

Biochemistry. 2011 Mar 29;50(12):2357-63. doi: 10.1021/bi102020s. Epub 2011 Feb 21.

Abstract

Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

摘要

脱氢奎宁酸脱水酶(DHQD)催化生物合成莽草酸途径的第三步。我们呈现了三种沙门氏菌属 I 型 DHQD 的晶体结构,这些结构解决了在底物结合后观察到的表面环关闭活性位点的功能。两个具有不同环构象的野生型结构以及突变体的动力学和结构研究提供了证据,证明该环直接和间接参与了底物结合。除了允许氨基酸侧链与底物直接相互作用外,环的闭合还需要关键活性位点精氨酸的构象变化,这反过来又使底物具有生产性。DHQD 在人类中不存在,并且在许多致病性细菌中是必需的,这使得该酶成为开发无毒抗菌药物的目标。这里呈现的结构和配体结合见解可能为新型 I 型 DHQD 抑制分子的设计提供信息。

相似文献

2
Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.
J Biol Chem. 2011 Feb 4;286(5):3531-9. doi: 10.1074/jbc.M110.192831. Epub 2010 Nov 18.
4
5
Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum.
J Struct Funct Genomics. 2013 Mar;14(1):25-30. doi: 10.1007/s10969-013-9149-7. Epub 2013 Mar 29.
6
Crystal structure of type I 3-dehydroquinate dehydratase of Aquifex aeolicus suggests closing of active site flap is not essential for enzyme action.
Biochem Biophys Res Commun. 2013 Mar 8;432(2):350-4. doi: 10.1016/j.bbrc.2013.01.099. Epub 2013 Feb 8.
8
Structural study of the type II 3-dehydroquinate dehydratase from Actinobacillus pleuropneumoniae.
Acta Crystallogr D Biol Crystallogr. 2004 Mar;60(Pt 3):463-71. doi: 10.1107/S090744490302969X. Epub 2004 Feb 25.
9
Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from .
J Microbiol Biotechnol. 2023 Dec 28;33(12):1595-1605. doi: 10.4014/jmb.2305.05018. Epub 2023 Aug 18.

引用本文的文献

1
Identification of polyketide inhibitors targeting 3-dehydroquinate dehydratase in the shikimate pathway of Enterococcus faecalis.
PLoS One. 2014 Jul 29;9(7):e103598. doi: 10.1371/journal.pone.0103598. eCollection 2014.
2
Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase.
PLoS One. 2014 Feb 21;9(2):e89356. doi: 10.1371/journal.pone.0089356. eCollection 2014.
3
Adherence to Bürgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes.
Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):544-52. doi: 10.1107/S1399004713030666. Epub 2014 Jan 31.
5
Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum.
J Struct Funct Genomics. 2013 Mar;14(1):25-30. doi: 10.1007/s10969-013-9149-7. Epub 2013 Mar 29.
6

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.
J Biol Chem. 2011 Feb 4;286(5):3531-9. doi: 10.1074/jbc.M110.192831. Epub 2010 Nov 18.
3
Chapter 3. High-throughput protein purification for x-ray crystallography and NMR.
Adv Protein Chem Struct Biol. 2008;75:85-105. doi: 10.1016/S0065-3233(07)75003-9. Epub 2009 Feb 26.
4
Structural genomics and drug discovery for infectious diseases.
Infect Disord Drug Targets. 2009 Nov;9(5):507-17. doi: 10.2174/187152609789105713.
7
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
8
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
THE ABSOLUTE STEREOCHEMICAL COURSE OF CITRIC ACID BIOSYNTHESIS.
Proc Natl Acad Sci U S A. 1963 Nov;50(5):981-8. doi: 10.1073/pnas.50.5.981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验