Center for Structural Genomics of Infectious Diseases and Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States.
Biochemistry. 2014 Feb 11;53(5):872-80. doi: 10.1021/bi4015506. Epub 2014 Jan 31.
A component of the shikimate biosynthetic pathway, dehydroquinate dehydratase (DHQD) catalyzes the dehydration of 3-dehydroquniate (DHQ) to 3-dehydroshikimate. In the type I DHQD reaction mechanism a lysine forms a Schiff base intermediate with DHQ. The Schiff base acts as an electron sink to facilitate the catalytic dehydration. To address the mechanism of Schiff base formation, we determined structures of the Salmonella enterica wild-type DHQD in complex with the substrate analogue quinate and the product analogue shikimate. In addition, we determined the structure of the K170M mutant (Lys170 being the Schiff base forming residue) in complex with quinate. Combined with nuclear magnetic resonance and isothermal titration calorimetry data that revealed altered binding of the analogue to the K170M mutant, these structures suggest a model of Schiff base formation characterized by the dynamic interplay of opposing forces acting on either side of the substrate. On the side distant from the substrate 3-carbonyl group, closure of the enzyme's β8-α8 loop is proposed to guide DHQ into the proximity of the Schiff base-forming Lys170. On the 3-carbonyl side of the substrate, Lys170 sterically alters the position of DHQ's reactive ketone, aligning it at an angle conducive for nucleophilic attack. This study of a type I DHQD reveals the interplay between the enzyme and substrate required for the correct orientation of a functional group constrained within a cyclic substrate.
分支酸生物合成途径的一个组成部分,脱氢奎宁酸脱水酶(DHQD)催化 3-脱氢奎宁酸(DHQ)脱水生成 3-脱氢莽草酸。在 I 型 DHQD 反应机制中,赖氨酸与 DHQ 形成席夫碱中间产物。席夫碱作为电子受体促进催化脱水。为了解决席夫碱形成的机制,我们确定了与底物类似物奎宁酸和产物类似物莽草酸结合的野生型沙门氏菌 DHQD 的结构。此外,我们还确定了 K170M 突变体(赖氨酸 170 是席夫碱形成残基)与奎宁酸复合物的结构。结合核磁共振和等温滴定量热数据,揭示了类似物与 K170M 突变体结合的改变,这些结构提出了一个席夫碱形成模型,其特征是作用于底物两侧的相反力的动态相互作用。在远离底物 3-羰基基团的一侧,酶的β8-α8 环的闭合被提议将 DHQ 引导到席夫碱形成赖氨酸 170 的附近。在底物的 3-羰基侧,赖氨酸 170 改变了 DHQ 的反应酮的位置,使其与亲核攻击有利的角度对齐。这项对 I 型 DHQD 的研究揭示了酶和底物之间相互作用的要求,以正确定向受限在环状底物中的功能基团。