Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
J Biol Chem. 2011 Feb 4;286(5):3531-9. doi: 10.1074/jbc.M110.192831. Epub 2010 Nov 18.
The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.
生物合成莽草酸途径由七种酶组成,这些酶催化连续反应生成分支点关键物质——分支酸,这是芳香族氨基酸合成过程中的一个关键分支点。途径中的第三种酶——脱氢奎尼酸脱水酶(DHQD),催化 3-脱氢奎尼酸脱水生成 3-脱氢莽草酸。我们呈现了来自肠道病原体艰难梭菌和沙门氏菌的 I 型 DHQD 的三个晶体结构。带有底物和共价预脱水和后脱水反应中间体的酶结构提供了沿着 I 型 DHQD 催化反应坐标进行的连续步骤的快照。这些结构表明,在形成席夫碱时,底物在活性位点中的位置不会明显改变。中间状态结构揭示了 His-143 的反应状态依赖性行为,只有当离去基团存在时,该残基才会采取接近催化脱水部位的构象。我们推测 His-143 可能在其观察到的每种构象中都具有不同的催化作用。His-143 的一种构象将残基定位用于形成/水解共价席夫碱中间体,而另一种构象则将残基定位用于催化脱水事件。由于人体内不存在莽草酸途径,因此该途径的酶可能成为开发无毒抗菌药物的潜在目标。这里呈现的结构和机制见解可能为 I 型 DHQD 酶抑制剂的设计提供信息。