Suppr超能文献

揭示 I 型脱水酶反应中间体结构中的作用机制。

Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.

机构信息

Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.

出版信息

J Biol Chem. 2011 Feb 4;286(5):3531-9. doi: 10.1074/jbc.M110.192831. Epub 2010 Nov 18.

Abstract

The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.

摘要

生物合成莽草酸途径由七种酶组成,这些酶催化连续反应生成分支点关键物质——分支酸,这是芳香族氨基酸合成过程中的一个关键分支点。途径中的第三种酶——脱氢奎尼酸脱水酶(DHQD),催化 3-脱氢奎尼酸脱水生成 3-脱氢莽草酸。我们呈现了来自肠道病原体艰难梭菌和沙门氏菌的 I 型 DHQD 的三个晶体结构。带有底物和共价预脱水和后脱水反应中间体的酶结构提供了沿着 I 型 DHQD 催化反应坐标进行的连续步骤的快照。这些结构表明,在形成席夫碱时,底物在活性位点中的位置不会明显改变。中间状态结构揭示了 His-143 的反应状态依赖性行为,只有当离去基团存在时,该残基才会采取接近催化脱水部位的构象。我们推测 His-143 可能在其观察到的每种构象中都具有不同的催化作用。His-143 的一种构象将残基定位用于形成/水解共价席夫碱中间体,而另一种构象则将残基定位用于催化脱水事件。由于人体内不存在莽草酸途径,因此该途径的酶可能成为开发无毒抗菌药物的潜在目标。这里呈现的结构和机制见解可能为 I 型 DHQD 酶抑制剂的设计提供信息。

相似文献

1
Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.
J Biol Chem. 2011 Feb 4;286(5):3531-9. doi: 10.1074/jbc.M110.192831. Epub 2010 Nov 18.
5
8
Enzymatic preparation of metabolic intermediates, 3-dehydroquinate and 3-dehydroshikimate, in the shikimate pathway.
Biosci Biotechnol Biochem. 2006 Dec;70(12):3081-3. doi: 10.1271/bbb.60414. Epub 2006 Dec 7.
10
Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum.
J Struct Funct Genomics. 2013 Mar;14(1):25-30. doi: 10.1007/s10969-013-9149-7. Epub 2013 Mar 29.

引用本文的文献

1
The shikimate pathway: gateway to metabolic diversity.
Nat Prod Rep. 2024 Apr 24;41(4):604-648. doi: 10.1039/d3np00037k.
2
An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway.
Antibiotics (Basel). 2022 May 17;11(5):675. doi: 10.3390/antibiotics11050675.
3
Molecular analysis and essentiality of Aro1 shikimate biosynthesis multi-enzyme in .
Life Sci Alliance. 2022 May 5;5(8). doi: 10.26508/lsa.202101358. Print 2022 Aug.
5
Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3'-Deoxy Nucleoside of Pacidamycins.
Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12492-12497. doi: 10.1002/anie.201705639. Epub 2017 Aug 30.
6
Identification of polyketide inhibitors targeting 3-dehydroquinate dehydratase in the shikimate pathway of Enterococcus faecalis.
PLoS One. 2014 Jul 29;9(7):e103598. doi: 10.1371/journal.pone.0103598. eCollection 2014.
7
Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase.
PLoS One. 2014 Feb 21;9(2):e89356. doi: 10.1371/journal.pone.0089356. eCollection 2014.
8
Adherence to Bürgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes.
Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):544-52. doi: 10.1107/S1399004713030666. Epub 2014 Jan 31.
10
Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum.
J Struct Funct Genomics. 2013 Mar;14(1):25-30. doi: 10.1007/s10969-013-9149-7. Epub 2013 Mar 29.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Chapter 3. High-throughput protein purification for x-ray crystallography and NMR.
Adv Protein Chem Struct Biol. 2008;75:85-105. doi: 10.1016/S0065-3233(07)75003-9. Epub 2009 Feb 26.
3
How essential is the 'essential' active-site lysine in dihydrodipicolinate synthase?
Biochimie. 2010 Jul;92(7):837-45. doi: 10.1016/j.biochi.2010.03.004. Epub 2010 Mar 29.
4
Structure and lability of archaeal dehydroquinase.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Oct 1;64(Pt 10):886-92. doi: 10.1107/S1744309108028546. Epub 2008 Sep 30.
8
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
Inhibitors of types I and II dehydroquinase.
Mini Rev Med Chem. 2004 Sep;4(7):747-56.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验