Suppr超能文献

新型肠道沙门氏菌 I 型脱水酶催化 Schiff 碱水解机制的理论研究。

New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.

机构信息

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.

出版信息

Org Biomol Chem. 2012 Sep 21;10(35):7037-44. doi: 10.1039/c2ob25605c. Epub 2012 Jul 31.

Abstract

The reaction pathway of Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase (DHQD) from S. enterica has been studied by performing molecular dynamics (MD) simulations and density functional theory (DFT) calculations and the corresponding potential energy profile has also been identified. On the basis of the results, the catalytic hydrolysis process for the wild-type enzyme consists of three major reaction steps, including nucleophilic attack on the carbon atom involved in the carbon-nitrogen double bond of the Schiff base intermediate by a water molecule, deprotonation of the His143 residue, and dissociation between the product and the Lys170 residue of the enzyme. The remarkable difference between this and the previously proposed reaction mechanism is that the second step here, absent in the previously proposed reaction mechanism, plays an important role in facilitating the reaction through a key proton transfer by the His143 residue, resulting in a lower energy barrier. Comparison with our recently reported results on the Schiff base formation and dehydration processes clearly shows that the Schiff base hydrolysis is rate-determining in the overall reaction catalyzed by type I DHQD, consistent with the experimental prediction, and the calculated energy barrier of ∼16.0 kcal mol(-1) is in good agreement with the experimentally derived activation free energy of ∼14.3 kcal mol(-1). When the imidazole group of His143 residue is missing, the Schiff base hydrolysis is initiated by a hydroxide ion in the solution, rather than a water molecule, and both the reaction mechanism and the kinetics of Schiff base hydrolysis have been remarkably changed, clearly elucidating the catalytic role of the His143 residue in the reaction. The new mechanistic insights obtained here will be valuable for the rational design of high-activity inhibitors of type I DHQD as non-toxic antimicrobials, anti-fungals, and herbicides.

摘要

Ⅰ型脱水喹啉酸脱氢酶(DHQD)催化的席夫碱水解反应途径已通过分子动力学(MD)模拟和密度泛函理论(DFT)计算进行了研究,并确定了相应的势能曲线。在此基础上,野生型酶的催化水解过程包括三个主要反应步骤,包括水分子对席夫碱中间体中涉及碳氮双键的碳原子的亲核攻击、His143 残基的去质子化以及产物与酶的 Lys170 残基之间的解离。与先前提出的反应机制的显著区别在于,第二步在先前提出的反应机制中不存在,但通过 His143 残基的关键质子转移,在促进反应中起着重要作用,导致能量势垒降低。与我们最近关于席夫碱形成和脱水过程的报道结果进行比较清楚地表明,席夫碱水解是Ⅰ型 DHQD 催化的整个反应的速率决定步骤,与实验预测一致,计算得到的约 16.0 kcal mol(-1)的能量势垒与实验得出的约 14.3 kcal mol(-1)的活化自由能吻合较好。当 His143 残基的咪唑基团缺失时,席夫碱水解由溶液中的氢氧根离子引发,而不是水分子,并且席夫碱水解的反应机制和动力学都发生了显著变化,这清楚地阐明了 His143 残基在反应中的催化作用。此处获得的新的机制见解对于合理设计Ⅰ型 DHQD 的高活性抑制剂作为非毒性抗菌剂、抗真菌剂和除草剂将具有重要价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验