Suppr超能文献

基因表达谱预测口腔癌的发生。

Gene expression profiling predicts the development of oral cancer.

机构信息

Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Cancer Prev Res (Phila). 2011 Feb;4(2):218-29. doi: 10.1158/1940-6207.CAPR-10-0155.

Abstract

Patients with oral premalignant lesion (OPL) have a high risk of developing oral cancer. Although certain risk factors, such as smoking status and histology, are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develop multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinicopathologic risk factors. On the basis of the gene expression profile data, we also identified 2,182 transcripts significantly associated with oral cancer risk-associated genes (P value < 0.01; univariate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomal components as the top gene sets associated with oral cancer risk. In multiple independent data sets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention.

摘要

口腔癌前病变(OPL)患者发生口腔癌的风险较高。虽然已知某些风险因素,如吸烟状况和组织学,但我们预测口腔癌风险的能力仍然很差。本研究旨在确定基因表达谱在预测口腔癌发展中的价值。在参加使用口腔癌发展作为预设终点的临床化学预防试验的 162 名 OPL 患者中的 86 名患者中测量了基因表达谱。中位随访时间为 6.08 年,86 名患者中有 35 名在随访过程中发生了口腔癌。基因表达谱与无口腔癌生存相关,并用于开发用于预测口腔癌的多变量预测模型。我们开发了一个包含 29 个转录本的预测模型,与使用先前已知的临床病理危险因素的模型相比,该模型在预测准确性方面有显著提高(预测误差率为 8%)。基于基因表达谱数据,我们还确定了 2182 个与口腔癌风险相关基因显著相关的转录本(P 值<0.01;单变量 Cox 比例风险模型)。功能途径分析显示蛋白酶体机械、MYC 和核糖体成分是与口腔癌风险相关的最重要的基因集。在多个独立的数据集中,基因表达谱可区分头颈部癌症与正常黏膜。我们的结果表明,基因表达谱可能改善对 OPL 患者口腔癌风险的预测,并且确定的显著基因可能作为口腔癌化学预防的潜在靶标。

相似文献

1
Gene expression profiling predicts the development of oral cancer.
Cancer Prev Res (Phila). 2011 Feb;4(2):218-29. doi: 10.1158/1940-6207.CAPR-10-0155.
2
Salivary transcriptome diagnostics for oral cancer detection.
Clin Cancer Res. 2004 Dec 15;10(24):8442-50. doi: 10.1158/1078-0432.CCR-04-1167.
3
DeltaNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia.
Clin Cancer Res. 2009 Oct 1;15(19):6284-91. doi: 10.1158/1078-0432.CCR-09-0498. Epub 2009 Sep 22.
5
Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma.
Cancer Sci. 2007 May;98(5):740-6. doi: 10.1111/j.1349-7006.2007.00454.x. Epub 2007 Mar 28.
9
Introducing Cytology-Based Theranostics in Oral Squamous Cell Carcinoma: A Pilot Program.
Pathol Oncol Res. 2016 Apr;22(2):401-11. doi: 10.1007/s12253-015-0017-6. Epub 2015 Nov 18.
10
A prototype tobacco-associated oral squamous cell carcinoma classifier using RNA from brush cytology.
J Oral Pathol Med. 2013 Oct;42(9):663-9. doi: 10.1111/jop.12068. Epub 2013 Apr 17.

引用本文的文献

3
Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery.
Heliyon. 2024 Aug 2;10(15):e35742. doi: 10.1016/j.heliyon.2024.e35742. eCollection 2024 Aug 15.
4
Mast Cell Infiltration and Subtype Promote Malignant Transformation of Oral Precancer and Progression of Oral Cancer.
Cancer Res Commun. 2024 Aug 1;4(8):2203-2214. doi: 10.1158/2767-9764.CRC-24-0169.
5
Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review.
Molecules. 2024 May 20;29(10):2402. doi: 10.3390/molecules29102402.
8
RNA-Based Liquid Biopsy in Head and Neck Cancer.
Cells. 2023 Jul 23;12(14):1916. doi: 10.3390/cells12141916.

本文引用的文献

1
An Integrative Pathway-based Clinical-genomic Model for Cancer Survival Prediction.
Stat Probab Lett. 2010 Sep 7;80(17-18):1313-1319. doi: 10.1016/j.spl.2010.04.011.
2
Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer.
Cancer Prev Res (Phila). 2010 Jul;3(7):800-9. doi: 10.1158/1940-6207.CAPR-09-0163. Epub 2010 Jun 22.
3
MYC as a regulator of ribosome biogenesis and protein synthesis.
Nat Rev Cancer. 2010 Apr;10(4):301-9. doi: 10.1038/nrc2819.
4
Gene expression-based prognostic signatures in lung cancer: ready for clinical use?
J Natl Cancer Inst. 2010 Apr 7;102(7):464-74. doi: 10.1093/jnci/djq025. Epub 2010 Mar 16.
5
Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions.
Cancer Prev Res (Phila). 2009 Nov;2(11):931-41. doi: 10.1158/1940-6207.CAPR-09-0121.
6
DeltaNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia.
Clin Cancer Res. 2009 Oct 1;15(19):6284-91. doi: 10.1158/1078-0432.CCR-09-0498. Epub 2009 Sep 22.
8
Clinical development of novel proteasome inhibitors for cancer treatment.
Expert Opin Investig Drugs. 2009 Jul;18(7):957-71. doi: 10.1517/13543780903002074.
9
DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer.
Clin Cancer Res. 2009 Jun 1;15(11):3663-71. doi: 10.1158/1078-0432.CCR-08-2383. Epub 2009 May 26.
10
Boosting for high-dimensional time-to-event data with competing risks.
Bioinformatics. 2009 Apr 1;25(7):890-6. doi: 10.1093/bioinformatics/btp088. Epub 2009 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验