Suppr超能文献

一种联合理论和体外建模方法,用于预测体内磁性纳米颗粒的磁捕获和滞留。

A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo.

机构信息

Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Control Release. 2011 May 30;152(1):67-75. doi: 10.1016/j.jconrel.2011.01.033. Epub 2011 Feb 2.

Abstract

Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our "corrected" mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies.

摘要

磁性纳米颗粒(MNP)作为癌症诊断和治疗的潜在工具,继续引起广泛关注。尽管在将 MNP 靶向肿瘤的过程中存在许多相互作用的力,但大多数对这一过程的理论考虑都忽略了除磁力和阻力之外的所有力。我们对体外模型进行了验证,并与体内数据进行了比较,随后使用理论模型重现了体外结果,结果表明这两种力确实主导了 MNP 的磁性捕获。然而,由于纳米颗粒可能会发生聚集,并且大的 MNP 会经历更大的磁力,因此表面力对 MNP 稳定性的影响不容忽视。我们通过测量磁场保留的 MNP 的大小来简单地考虑聚集的表面力,并在数学模型中使用这个大小。这可能解释了所有的颗粒间相互作用,包括磁偶极子之间的相互作用。因此,我们的“修正”数学模型不仅可以合理地估计 MNP 的保留分数,还可以预测模拟毛细管中积累的区域。此外,该模型还可用于计算 MNP 大小和空间位置相对于磁铁对 MNP 靶向肿瘤的影响。这种体外模型与理论模型的结合可能有助于对磁性靶向进行参数评估,并能够快速增强和优化磁性靶向方法。

相似文献

10

引用本文的文献

5
Nanoparticles for imaging: top or flop?用于成像的纳米颗粒:成功还是失败?
Radiology. 2014 Oct;273(1):10-28. doi: 10.1148/radiol.14131520.
9
Cancer theranostics: the rise of targeted magnetic nanoparticles.癌症治疗学:靶向磁性纳米粒子的兴起。
Trends Biotechnol. 2011 Jul;29(7):323-32. doi: 10.1016/j.tibtech.2011.03.001. Epub 2011 Apr 12.

本文引用的文献

2
Experimental approaches for the treatment of malignant gliomas.恶性脑胶质瘤的治疗方法。
Pharmacol Ther. 2010 Oct;128(1):1-36. doi: 10.1016/j.pharmthera.2010.04.015. Epub 2010 Jun 8.
6
Multifunctional magnetic nanoparticles for targeted imaging and therapy.用于靶向成像和治疗的多功能磁性纳米颗粒。
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1241-1251. doi: 10.1016/j.addr.2008.03.014. Epub 2008 Apr 10.
10
Hydrodynamics of magnetic drug targeting.磁性药物靶向的流体动力学
J Biomech. 2002 Jun;35(6):813-21. doi: 10.1016/s0021-9290(02)00034-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验