Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
Neurobiol Dis. 2011 Jul;43(1):38-45. doi: 10.1016/j.nbd.2011.01.021. Epub 2011 Feb 3.
Autophagy, the major degradative pathway for organelles and long-lived proteins, is essential for the survival of neurons. Mounting evidence has implicated defective autophagy in the pathogenesis of several major neurodegenerative diseases, particularly Alzheimer's disease (AD). A continuum of abnormalities of the lysosomal system has been identified in neurons of the AD brain, including pathological endocytic pathway responses at the very earliest disease stage and a progressive disruption of autophagy leading to the massive buildup of incompletely digested substrates within dystrophic axons and dendrites. In this review, we examine research on autophagy in AD and evaluate evidence addressing the specific step or steps along the autophagy pathway that may be defective. Current evidence strongly points to disruption of substrate proteolysis within autolysosomes for the principal mechanism underlying autophagy failure in AD. In the most common form of familial early onset AD, mutant presenilin 1 disrupts autophagy directly by impeding lysosomal proteolysis while, in other forms of AD, autophagy impairments may involve different genetic or environmental factors. Attempts to restore more normal lysosomal proteolysis and autophagy efficiency in mouse models of AD pathology have yielded promising therapeutic effects on neuronal function and cognitive performance, demonstrating the relevance of autophagy failure to the pathogenesis of AD and the potential of autophagy modulation as a therapeutic strategy. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
自噬是细胞器和长寿命蛋白质的主要降解途径,对神经元的存活至关重要。越来越多的证据表明,自噬缺陷与几种主要神经退行性疾病的发病机制有关,特别是阿尔茨海默病(AD)。在 AD 大脑的神经元中已经确定了溶酶体系统的一系列异常,包括在疾病的最早阶段病理性内吞途径反应,以及自噬的进行性破坏,导致未完全消化的底物在变性轴突和树突内大量堆积。在这篇综述中,我们检查了 AD 中的自噬研究,并评估了与自噬途径中可能存在缺陷的特定步骤相关的证据。目前的证据强烈表明,AD 中自噬失败的主要机制是自噬溶酶体内底物蛋白水解的破坏。在最常见的家族性早发性 AD 形式中,突变早老素 1 通过阻碍溶酶体蛋白水解直接破坏自噬,而在其他形式的 AD 中,自噬损伤可能涉及不同的遗传或环境因素。在 AD 病理的小鼠模型中恢复更正常的溶酶体蛋白水解和自噬效率的尝试已经对神经元功能和认知表现产生了有希望的治疗效果,证明了自噬失败与 AD 的发病机制以及自噬调节作为一种治疗策略的相关性。本文是题为“神经疾病中的自噬和蛋白质降解”的特刊的一部分。