The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Med Phys. 2012 Apr;39(4):2275-89. doi: 10.1118/1.3682173.
Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis.
Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B(1) inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions.
The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%).
The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.
使用放射影像学方法对解剖结构进行可视化是医学中区分正常组织和病理组织的重要工具,可为放射科医生阅读生成大量数据。整合这些大数据集既困难又耗时。一种新方法使用监督和无监督的先进机器学习技术来可视化和分割放射数据。本研究描述了一种新的混合方案的应用,该方案基于结合小波变换和非线性降维(NLDR)方法,使用三种成熟的 NLDR 技术,即等距映射(ISOMAP)、局部线性嵌入(LLE)和扩散映射(DfM),对乳腺磁共振成像(MRI)数据进行分析,以进行比较性能分析。
对 25 名乳腺病变患者进行了 3T 扫描仪扫描。使用的 MRI 序列为 T1 加权、T2 加权、扩散加权成像(DWI)和动态对比增强(DCE)成像。混合方案包括两个步骤:数据的预处理和后处理。预处理步骤用于进行 B(1)不均匀性校正、图像配准和基于小波的图像压缩,以匹配和降噪数据。在后处理步骤中,将 MRI 参数视为数据维度,并应用基于 NLDR 的混合方法将 MRI 参数集成到单个图像中,称为嵌入图像。通过将所有像素强度从较高维度映射到较低维度(嵌入)空间来实现。为了验证,作者使用合成数据比较了混合 NLDR 与主成分分析(PCA)和多维尺度(MDS)等线性方法。对于临床应用,作者使用乳腺 MRI 数据,比较使用对比后 DCE MRI 图像,并评估分割病变的一致性。
基于 NLDR 的混合方法能够定义和分割合成和临床数据。在合成数据中,作者展示了 NLDR 方法与传统线性 DR 方法的性能比较。NLDR 方法能够成功分割结构,而在大多数情况下,PCA 和 MDS 失败。NLDR 方法能够以高精度分割不同的乳腺组织类型,并且乳腺 MRI 数据的嵌入图像显示了不同类型的乳腺组织之间的模糊边界,即脂肪、腺体和有病变的组织(>86%)。
所提出的混合 NLDR 方法能够以高精度分割临床乳腺数据,并构建一个嵌入图像,该图像可以可视化不同放射学参数的贡献。