Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
PLoS Comput Biol. 2011 Jan 27;7(1):e1001067. doi: 10.1371/journal.pcbi.1001067.
Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca²+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca²+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca²+ dynamics: 1) the biphasic increment during the upstroke of the Ca²+ transient resulting from the delay between the peripheral and central SR Ca²+ release, and 2) the relative contribution of SL Ca²+ current and SR Ca²+ release to the Ca²+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca²+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca²+ release sites define the interface between Ca²+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca²+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca²+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca²+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes.
人类心脏的电生理学研究面临着一个基本挑战,即只能从患有潜在心脏病的患者中获取实验数据。在人类心房方面,对于细胞钙离子动力学在兴奋-收缩偶联调制中的功能作用的理解存在很大差距,这与心室细胞有很大的不同。因此,本研究的目的是开发一个人类心房心肌细胞的数学模型,该模型除了肌膜(SL)离子电流外,还考虑了从结构上详细的肌浆网(SR)中出现的细胞内钙离子动力学的异质性。基于模拟结果,我们的模型令人信服地再现了钙离子动力学的主要特征:1)钙瞬变上升过程中的双相增量,这是由于外周和中央 SR 钙离子释放之间的延迟引起的,2)SL 钙离子电流和 SR 钙离子释放对钙瞬变的相对贡献。与实验结果一致,该模型还复制了细胞内钙离子动力学对动作电位形状的强烈影响。模拟结果表明,外周 SR 钙离子释放位点定义了钙和 AP 之间的界面,而中央释放位点对于钙离子扩散的火-扩散-火传播很重要。此外,我们的分析表明,由于心率增加导致动作电位持续时间的调制在很大程度上是由细胞内 Na+浓度的变化介导的。最后,结果表明,SR 钙离子释放是 AP 持续时间的强调节剂,因此也是心肌细胞不应期/兴奋性的强调节剂。我们得出结论,所开发的模型是稳健的,再现了 SL 离子流和细胞内钙离子信号之间紧密偶联的许多基本方面。因此,该模型为未来研究人类心房心肌细胞的兴奋-收缩偶联提供了一个有用的框架。