Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3988-93. doi: 10.1073/pnas.0911247107. Epub 2010 Feb 8.
Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.
利用合成糖类似物对聚糖进行代谢标记已成为向糖蛋白中引入非天然化学功能的一种有吸引力的方法。然而,糖生物合成的复杂性阻止了在糖蛋白中以高掺入水平在定义的、可预测的位置安装非天然部分。在这里,我们证明了模型生物酿酒酵母中 N-糖蛋白的核心岩藻糖二糖中的保守 N-乙酰葡萄糖胺(GlcNAc)残基可以被非天然糖特异性靶向进行代谢替换。我们在酵母中引入了外源性 GlcNAc 回收途径,使细胞能够代谢作为培养基补充物提供的 GlcNAc。然后,我们通过删除必需基因 GNA1 使酵母对供体核苷酸糖尿苷二磷酸-GlcNAc(UDP-GlcNAc)的产生变得营养缺陷。我们证明 gna1Delta 菌株需要 GlcNAc 补充,并且在这种情况下,含有回收途径外源性成分的表达质粒,即来自白色念珠菌的 GlcNAc 转运蛋白 NGT1 和来自人类的 GlcNAc 激酶 NAGK,是挽救的必需条件。此外,我们表明细胞成功地将合成的 GlcNAc 类似物 N-叠氮乙酰葡萄糖胺(GlcNAz)和 N-(4-戊炔酰基)-葡萄糖胺(GlcNAl)掺入细胞表面聚糖和分泌糖蛋白中。为了验证非天然糖在 N-聚糖核心位置的掺入,通过质谱法分析了从纯化的分泌糖蛋白 Ygp1 中内切糖苷酶 H(endoH)消化的肽。鉴定了多个带有 GlcNAc、同位素标记的 GlcNAc 或 GlcNAz 的 Ygp1 N-糖基化位点;这些修饰依赖于添加到培养基中的补充物。该系统能够生产在其糖基化位点进行特定化学修饰的糖蛋白。