Group for Neural Theory, Department d'Etudes Cognitives, Ecole Normale Superieure, 75005 Paris, France.
J Neurosci. 2011 Feb 9;31(6):2321-36. doi: 10.1523/JNEUROSCI.2853-10.2011.
Identifying similar spike-train patterns is a key element in understanding neural coding and computation. For single neurons, similar spike patterns evoked by stimuli are evidence of common coding. Across multiple neurons, similar spike trains indicate potential cell assemblies. As recording technology advances, so does the urgent need for grouping methods to make sense of large-scale datasets of spike trains. Existing methods require specifying the number of groups in advance, limiting their use in exploratory analyses. I derive a new method from network theory that solves this key difficulty: it self-determines the maximum number of groups in any set of spike trains, and groups them to maximize intragroup similarity. This method brings us revealing new insights into the encoding of aversive stimuli by dopaminergic neurons, and the organization of spontaneous neural activity in cortex. I show that the characteristic pause response of a rat's dopaminergic neuron depends on the state of the superior colliculus: when it is inactive, aversive stimuli invoke a single pattern of dopaminergic neuron spiking; when active, multiple patterns occur, yet the spike timing in each is reliable. In spontaneous multineuron activity from the cortex of anesthetized cat, I show the existence of neural ensembles that evolve in membership and characteristic timescale of organization during global slow oscillations. I validate these findings by showing that the method both is remarkably reliable at detecting known groups and can detect large-scale organization of dynamics in a model of the striatum.
识别相似的尖峰模式是理解神经编码和计算的关键要素。对于单个神经元,由刺激引起的相似尖峰模式是共同编码的证据。在多个神经元中,相似的尖峰序列表示潜在的细胞集合。随着记录技术的进步,对分组方法的迫切需求也在增加,以便对大规模尖峰序列数据集进行分析。现有的方法需要提前指定分组的数量,这限制了它们在探索性分析中的应用。我从网络理论中推导出一种新的方法来解决这个关键问题:它可以自动确定任何一组尖峰序列中的最大分组数量,并将它们分组以最大化组内相似性。这种方法使我们对多巴胺能神经元对厌恶刺激的编码以及皮层中自发神经活动的组织有了新的认识。我表明,大鼠多巴胺能神经元的特征性停顿反应取决于上丘的状态:当它不活跃时,厌恶刺激会引发多巴胺能神经元的单一尖峰模式;当它活跃时,会出现多种模式,但每个模式的尖峰时间都是可靠的。在麻醉猫皮层的自发多神经元活动中,我展示了在全局慢波振荡过程中,神经元集合的存在及其在成员和组织特征时间尺度上的演变。我通过显示该方法不仅可以可靠地检测已知的组,还可以检测纹状体模型中动力学的大规模组织,验证了这些发现。