Vargas-Irwin Carlos E, Hynes Jacqueline B, Brandman David M, Zimmermann Jonas B, Donoghue John P
Department of Neuroscience, Brown University, Providence, RI, United States.
Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States.
Front Neurosci. 2025 Aug 14;19:1634652. doi: 10.3389/fnins.2025.1634652. eCollection 2025.
The expansion of large-scale neural recording capabilities has provided new opportunities to examine multi-scale cortical network activity at single neuron resolution. At the same time, the growing scale and complexity of these datasets introduce new conceptual and technical challenges beyond what can be addressed using traditional analysis techniques. Here, we present the Similarity Networks (SIMNETS) analysis framework: an efficient and scalable pipeline designed to embed simultaneously recorded neurons into low dimensional maps according to the intrinsic relationship between their spike trains, making it possible to identify and visualize groups of neurons performing similar computations. The critical innovation is the use of pairwise spike train similarity (SSIM) matrices to capture the intrinsic relationship between the spike trains emitted by a neuron at different points in time (i.e., different experimental conditions), reflecting how the neuron responds to time-varying internal and external drives and making it possible to easily compare the information processing properties across neuronal populations. We use three publicly available neural population test datasets from the visual, motor, and hippocampal CA1 brain regions to validate the SIMNETS framework and demonstrate how it can be used to identify putative subnetworks (i.e., clusters of neurons with similar computational properties). Our analysis pipeline includes a novel statistical test designed to evaluate the likelihood of detecting spurious neuron clusters to validate network structure results. The SIMNETS framework provides a way to rapidly examine the computational structure of neuronal networks at multiple scales based on the intrinsic structure of single unit spike trains.
大规模神经记录能力的扩展为以单神经元分辨率研究多尺度皮层网络活动提供了新机会。与此同时,这些数据集规模和复杂性的不断增加带来了新的概念和技术挑战,超出了传统分析技术所能解决的范围。在此,我们提出相似性网络(SIMNETS)分析框架:一种高效且可扩展的流程,旨在根据同时记录的神经元的尖峰序列之间的内在关系,将它们嵌入到低维映射中,从而能够识别和可视化执行相似计算的神经元组。关键创新在于使用成对尖峰序列相似性(SSIM)矩阵来捕捉神经元在不同时间点(即不同实验条件)发出的尖峰序列之间的内在关系,反映神经元如何响应随时间变化的内部和外部驱动,并使得能够轻松比较不同神经元群体的信息处理特性。我们使用来自视觉、运动和海马体CA1脑区的三个公开可用的神经群体测试数据集来验证SIMNETS框架,并展示如何使用它来识别假定的子网(即具有相似计算特性的神经元簇)。我们的分析流程包括一种新颖的统计测试,旨在评估检测到虚假神经元簇的可能性,以验证网络结构结果。SIMNETS框架提供了一种基于单个单元尖峰序列的内在结构快速检查多尺度神经元网络计算结构的方法。