Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
J Biol Chem. 2011 Apr 8;286(14):12149-56. doi: 10.1074/jbc.M110.213926. Epub 2011 Feb 15.
Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. Although the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. To map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless, they converted efficiently. Only the disulfides that tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion-infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structural segments, we provide evidence for the conservation of secondary structural elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that the domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.
朊病毒病是一种致命的可传播神经退行性疾病,影响许多哺乳动物物种。正常的朊病毒蛋白(PrP)转化为病理性聚集形式的 PrPSc,富含β-折叠结构。尽管正常 PrP 的高分辨率结构已被确定,但 PrP 转化形式的结构仍无法通过高分辨率技术获得。为了绘制 PrP 转化过程,我们在 PrP 的球形结构域内引入了二硫键,将选定的二级结构元件连接起来。大多数连接的 PrP 突变体表现出增加的热力学稳定性,但它们有效地转化。只有将亚结构域 B1-H1-B2 与亚结构域 H2-H3 连接起来的二硫键能够阻止体外和朊病毒感染的细胞培养物中的 PrP 转化。还原二硫键恢复了这些突变体转化的能力,表明亚结构域的分离是转化的一个必要步骤。由一对单半胱氨酸突变体组成的纤维中形成的蛋白酶 K 抗性二聚体的二硫键连接,支持了基于结构域交换二聚体作为朊病毒纤维构建块的模型。与先前提出的 PrPSc 结构模型相反,这些模型表明大的二级结构片段的转化,我们提供了证据证明 PrP 转化后球形结构域的二级结构元件保持保守。先前的研究已经表明,二聚化是 PrP 转化的限速步骤。我们表明,球形结构域的亚结构域的分离和交换对于转化是必要的。因此,我们提出 PrP 的结构域交换二聚体先于淀粉样纤维形成,并代表治疗干预的潜在靶标。