Suppr超能文献

基于心电图指标的心脏猝死风险分层——关于计算处理、技术转移和科学证据的综述

Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence.

作者信息

Gimeno-Blanes Francisco J, Blanco-Velasco Manuel, Barquero-Pérez Óscar, García-Alberola Arcadi, Rojo-Álvarez José L

机构信息

Department of Signal Theory and Communications, Miguel Hernández University Elche, Spain.

Department of Signal Theory and Communications, University of de Alcalá Alcalá de Henares, Spain.

出版信息

Front Physiol. 2016 Mar 7;7:82. doi: 10.3389/fphys.2016.00082. eCollection 2016.

Abstract

Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future.

摘要

近年来,人们致力于开发基于心电信号的心脏猝死风险预测指标,这些信号主要通过心电图(ECG)分析获得。但这些预测技术在临床实践中仍很少使用,部分原因是其诊断准确性有限,以及在适当的计算信号处理方法上缺乏共识。本文提出了一种基于心电图指标的三重方法,用于构建关于心脏猝死风险分层的综述。首先,介绍技术文献中广泛提出的用于获取这些指标的计算技术。其次,探讨科学证据,尽管这些证据得到了观察性临床研究的支持,但并不总是具有足够的代表性。第三,通过学院认可算法的有限技术转移,这需要对未来系统进行进一步思考。我们关注从上述观点出发处理的三类心电图衍生指标,即心率震荡(HRT)、心率变异性(HRV)和T波交替。在计算算法方面,我们仍需要更清晰的科学证据、标准化和基准测试,这基于应用于大型代表性数据集的先进算法。电子健康记录、大数据、长期监测和云数据库等新场景最终将开启新的框架,以便在不久的将来预见合适的新范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc6/4780431/3ca34b7e7244/fphys-07-00082-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验