Suppr超能文献

植物和蓝藻中 NADPH 硫氧还蛋白 C-2-Cys 过氧化物酶系统的比较分析。

A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.

机构信息

Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain.

出版信息

Plant Physiol. 2011 Apr;155(4):1806-16. doi: 10.1104/pp.110.171082. Epub 2011 Feb 18.

Abstract

Redox regulation based on disulfide-dithiol conversion catalyzed by thioredoxins is an important component of chloroplast function. The reducing power is provided by ferredoxin reduced by the photosynthetic electron transport chain. In addition, chloroplasts are equipped with a peculiar NADPH-dependent thioredoxin reductase, termed NTRC, with a joint thioredoxin domain at the carboxyl terminus. Because NADPH can be produced by the oxidative pentose phosphate pathway during the night, NTRC is important to maintain the chloroplast redox homeostasis under light limitation. NTRC is exclusive for photosynthetic organisms such as plants, algae, and some, but not all, cyanobacteria. Phylogenetic analysis suggests that chloroplast NTRC originated from an ancestral cyanobacterial enzyme. While the biochemical properties of plant NTRC are well documented, little is known about the cyanobacterial enzyme. With the aim of comparing cyanobacterial and plant NTRCs, we have expressed the full-length enzyme from the cyanobacterium Anabaena species PCC 7120 as well as site-directed mutant variants and truncated polypeptides containing the NTR or the thioredoxin domains of the protein. Immunological and kinetic analysis showed a high similarity between NTRCs from plants and cyanobacteria. Both enzymes efficiently reduced 2-Cys peroxiredoxins from plants and from Anabaena but not from the cyanobacterium Synechocystis. Arabidopsis (Arabidopsis thaliana) NTRC knockout plants were transformed with the Anabaena NTRC gene. Despite a lower content of NTRC than in wild-type plants, the transgenic plants showed significant recovery of growth and pigmentation. Therefore, the Anabaena enzyme fulfills functions of the plant enzyme in vivo, further emphasizing the similarity between cyanobacterial and plant NTRCs.

摘要

基于硫氧还蛋白催化的二硫键-二硫醇转换的氧化还原调节是叶绿体功能的重要组成部分。还原力由光合作用电子传递链还原的铁氧还蛋白提供。此外,叶绿体还配备了一种特殊的 NADPH 依赖的硫氧还蛋白还原酶,称为 NTRC,其羧基末端具有联合的硫氧还蛋白结构域。因为 NADPH 可以在夜间通过氧化戊糖磷酸途径产生,所以 NTRC 对于在光限制下维持叶绿体氧化还原平衡很重要。NTRC 是专属于光合生物的,如植物、藻类和一些但不是所有的蓝细菌。系统发育分析表明,叶绿体 NTRC 起源于祖先蓝细菌酶。虽然植物 NTRC 的生化特性已经得到很好的证明,但对蓝细菌酶知之甚少。为了比较蓝细菌和植物 NTRC,我们已经从蓝细菌 Anabaena 种 PCC 7120 表达了全长酶,以及定点突变变体和包含该蛋白的 NTR 或硫氧还蛋白结构域的截短多肽。免疫和动力学分析表明,植物和蓝细菌的 NTRC 之间具有高度相似性。两种酶都能有效地还原来自植物和 Anabaena 的 2-Cys 过氧化物还原酶,但不能还原来自蓝细菌 Synechocystis 的 2-Cys 过氧化物还原酶。拟南芥(Arabidopsis thaliana)NTRC 敲除植物被转化为 Anabaena NTRC 基因。尽管转基因植物的 NTRC 含量低于野生型植物,但它们的生长和色素恢复明显。因此,Anabaena 酶在体内履行了植物酶的功能,进一步强调了蓝细菌和植物 NTRC 之间的相似性。

相似文献

1
A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.
Plant Physiol. 2011 Apr;155(4):1806-16. doi: 10.1104/pp.110.171082. Epub 2011 Feb 18.
3
Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.
FEBS Lett. 2014 Nov 28;588(23):4342-7. doi: 10.1016/j.febslet.2014.09.044. Epub 2014 Oct 16.
4
Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.
Plant Signal Behav. 2012 Sep 1;7(9):1177-9. doi: 10.4161/psb.21001. Epub 2012 Aug 17.
5
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
J Exp Bot. 2010 Sep;61(14):4043-54. doi: 10.1093/jxb/erq218. Epub 2010 Jul 8.
6
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Plant Cell. 2006 Sep;18(9):2356-68. doi: 10.1105/tpc.106.041541. Epub 2006 Aug 4.
7
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074. doi: 10.1073/pnas.1706003114. Epub 2017 Oct 24.

引用本文的文献

1
Calredoxin regulates the chloroplast NADPH-dependent thioredoxin reductase in Chlamydomonas reinhardtii.
Plant Physiol. 2023 Oct 26;193(3):2122-2140. doi: 10.1093/plphys/kiad426.
3
Back to the future: Transplanting the chloroplast TrxF-FBPase-SBPase redox system to cyanobacteria.
Front Plant Sci. 2022 Nov 28;13:1052019. doi: 10.3389/fpls.2022.1052019. eCollection 2022.
4
Exploring the Diversity of the Thioredoxin Systems in Cyanobacteria.
Antioxidants (Basel). 2022 Mar 28;11(4):654. doi: 10.3390/antiox11040654.
6
Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria.
Antioxidants (Basel). 2018 Nov 13;7(11):164. doi: 10.3390/antiox7110164.
8
Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants.
Plant Signal Behav. 2015;10(5):e1017698. doi: 10.1080/15592324.2015.1017698.

本文引用的文献

1
Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress.
J Biol Chem. 2010 Nov 5;285(45):34485-92. doi: 10.1074/jbc.M110.160465. Epub 2010 Aug 24.
2
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
J Exp Bot. 2010 Sep;61(14):4043-54. doi: 10.1093/jxb/erq218. Epub 2010 Jul 8.
5
Reining in H(2)O(2) for safe signaling.
Cell. 2010 Feb 19;140(4):454-6. doi: 10.1016/j.cell.2010.02.003.
6
The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive.
Mol Plant. 2009 May;2(3):457-67. doi: 10.1093/mp/ssp011. Epub 2009 Mar 26.
9
NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13. doi: 10.1073/pnas.0903559106. Epub 2009 May 22.
10
A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity.
FEBS Lett. 2009 May 6;583(9):1399-402. doi: 10.1016/j.febslet.2009.03.067. Epub 2009 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验