Suppr超能文献

Segmentation of 3D vasculatures for interventional radiology simulation.

作者信息

Song Yi, Luboz Vincent, Din Nizar, King Daniel, Gould Derek, Bello Fernando, Bulpitt Andy

机构信息

School of Computing, University of Leeds, UK.

出版信息

Stud Health Technol Inform. 2011;163:599-605.

Abstract

Training in interventional radiology is slowly shifting towards simulation which allows the repetition of many interventions without putting the patient at risk. Accurate segmentation of anatomical structures is a prerequisite of realistic surgical simulation. Therefore, our aim is to develop a generic approach to provide fast and precise segmentation of various virtual anatomies covering a wide range of pathology, directly from patient CT/MRA images. This paper presents a segmentation framework including two segmentation methods: region model based level set segmentation and hierarchical segmentation. We compare them to an open source application ITK-SNAP which provides similar approaches. The subjective human influence such as inconsistent inter-observer errors and aliasing artifacts etc. are analysed. The proposed segmentation techniques have been successfully applied to create a database of various anatomies with different pathologies, which is used in computer-based simulation for interventional radiology training.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验