Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Stat Med. 2011 May 10;30(10):1045-56. doi: 10.1002/sim.4191. Epub 2011 Feb 21.
Mathematical modeling of hepatitis C viral (HCV) kinetics is widely used for understanding viral pathogenesis and predicting treatment outcome. The standard model is based on a system of five non-linear ordinary differential equations (ODE) that describe both viral kinetics and changes in drug concentration after treatment initiation. In such complex models parameter estimation is challenging and requires frequent sampling measurements on each individual. By borrowing information between study subjects, non-linear mixed effect models can deal with sparser sampling from each individual. However, the search for optimal designs in this context has been limited by the numerical difficulty of evaluating the Fisher information matrix (FIM). Using the software PFIM, we show that a linearization of the statistical model avoids most of the computational burden, while providing a good approximation to the FIM. We then compare the precision of the parameters that can be expected using five study designs from the literature. We illustrate the usefulness of rationalizing data sampling by showing that, for a given level of precision, optimal design could reduce the total number of measurements by up 50 per cent. Our approach can be used by a statistician or a clinician aiming at designing an HCV viral kinetics study.
丙型肝炎病毒(HCV)动力学的数学建模被广泛用于了解病毒发病机制和预测治疗效果。标准模型基于一个由五个非线性常微分方程(ODE)组成的系统,描述了病毒动力学和治疗开始后药物浓度的变化。在这种复杂的模型中,参数估计具有挑战性,需要对每个个体进行频繁的采样测量。通过在研究对象之间借用信息,非线性混合效应模型可以处理每个个体更稀疏的采样。然而,由于评估 Fisher 信息矩阵(FIM)的数值困难,这种情况下的最优设计搜索一直受到限制。我们使用软件 PFIM 表明,统计模型的线性化避免了大部分计算负担,同时对 FIM 提供了很好的近似。然后,我们比较了使用文献中的五种研究设计可以预期的参数精度。我们通过展示,对于给定的精度水平,最优设计可以将总测量次数减少多达 50%,来说明合理安排数据采样的有用性。我们的方法可以由统计学家或临床医生用于设计 HCV 病毒动力学研究。