Suppr超能文献

新型超高亲和主体-客体配合物葫芦[7]脲与二环[2.2.2]辛烷和金刚烷客体:热力学分析和 M2 亲和力计算评估。

New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations.

机构信息

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States.

出版信息

J Am Chem Soc. 2011 Mar 16;133(10):3570-81. doi: 10.1021/ja109904u. Epub 2011 Feb 22.

Abstract

A dicationic ferrocene derivative has previously been shown to bind cucurbit[7]uril (CB[7]) in water with ultrahigh affinity (ΔG(o) = -21 kcal/mol). Here, we describe new compounds that bind aqueous CB[7] equally well, validating our prior suggestion that they, too, would be ultrahigh affinity CB[7] guests. The present guests, which are based upon either a bicyclo[2.2.2]octane or adamantane core, have no metal atoms, so these results also confirm that the remarkably high affinities of the ferrocene-based guest need not be attributed to metal-specific interactions. Because we used the M2 method to compute the affinities of several of the new host-guest systems prior to synthesizing them, the present results also provide for the first blinded evaluation of this computational method. The blinded calculations agree reasonably well with experiment and successfully reproduce the observation that the new adamantane-based guests achieve extremely high affinities, despite the fact that they position a cationic substituent at only one electronegative portal of the CB[7] host. However, there are also significant deviations from experiment, and these lead to the correction of a procedural error and an instructive evaluation of the sensitivity of the calculations to physically reasonable variations in molecular energy parameters. The new experimental and computational results presented here bear on the physical mechanisms of molecular recognition, the accuracy of the M2 method, and the usefulness of host-guest systems as test-beds for computational methods.

摘要

先前已经有报道表明,二价铁茂衍生物在水中与瓜环(CB[7])的结合具有超高亲和力(ΔG(o) = -21 kcal/mol)。在这里,我们描述了与 CB[7]在水中结合能力同样优异的新化合物,验证了我们之前的假设,即它们也是具有超高亲和力的 CB[7]主体。这些新的主体基于双环[2.2.2]辛烷或金刚烷核心,不含金属原子,因此这些结果也证实了基于二茂铁的客体具有极高亲和力并不一定归因于金属的特殊相互作用。由于我们在合成这些新的主客体体系之前使用 M2 方法计算了它们的亲和力,因此现在的结果也为该计算方法的首次盲法评估提供了依据。盲算结果与实验结果相当吻合,成功地再现了以下观察结果:尽管新的金刚烷基客体仅在 CB[7]主体的一个电负性入口处定位了一个阳离子取代基,但它们仍能实现极高的亲和力。然而,盲算结果与实验结果也存在显著偏差,这些偏差导致对一个程序错误的修正以及对计算结果对分子能量参数合理变化的敏感性的有益评估。这里呈现的新的实验和计算结果与分子识别的物理机制、M2 方法的准确性以及主客体体系作为计算方法的测试平台的实用性有关。

相似文献

5
Thermodynamic integration to predict host-guest binding affinities.热力学积分预测主客体结合亲和力。
J Comput Aided Mol Des. 2012 May;26(5):569-76. doi: 10.1007/s10822-012-9542-5. Epub 2012 Feb 16.
9
Overview of the SAMPL6 host-guest binding affinity prediction challenge.SAMPL6 主客体结合亲和力预测挑战概述。
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.

引用本文的文献

4
Supramolecular delivery of dinuclear ruthenium and osmium MCU inhibitors.双核钌和锇线粒体钙单向转运体抑制剂的超分子递送
Inorg Chem Front. 2024 Jul 11;11(16):5064-5079. doi: 10.1039/d4qi01102c. eCollection 2024 Aug 6.
9
Tuning Potential Functions to Host-Guest Binding Data.调整势能函数以适应主客体结合数据。
J Chem Theory Comput. 2024 Jan 9;20(1):239-252. doi: 10.1021/acs.jctc.3c01050. Epub 2023 Dec 26.
10
Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins.葫芦脲增强了自旋标记蛋白的距离测量。
J Am Chem Soc. 2023 Nov 29;145(47):25726-25736. doi: 10.1021/jacs.3c09184. Epub 2023 Nov 14.

本文引用的文献

2
Modeling Protein-Ligand Binding by Mining Minima.通过挖掘最小值对蛋白质-配体结合进行建模。
J Chem Theory Comput. 2010 Nov 9;6(11):3540-3557. doi: 10.1021/ct100245n. Epub 2010 Oct 8.
5
Ligand configurational entropy and protein binding.配体构象熵与蛋白质结合。
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1534-9. doi: 10.1073/pnas.0610494104. Epub 2007 Jan 22.
6
Concepts in receptor optimization: targeting the RGD peptide.受体优化的概念:靶向RGD肽
J Am Chem Soc. 2006 Apr 12;128(14):4675-84. doi: 10.1021/ja056600l.
10
Identification of symmetries in molecules and complexes.分子和配合物中对称性的识别。
J Chem Inf Comput Sci. 2004 Jul-Aug;44(4):1301-13. doi: 10.1021/ci049966a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验